精英家教網 > 高中數學 > 題目詳情

【題目】我國古代數學名著《算法統宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數是上一層燈數的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

【答案】B

【解析】設塔的頂層共有燈盞,則各層的燈數構成一個首項為,公比為2的等比數列,結合等比數列的求和公式有: ,解得,即塔的頂層共有燈3盞,故選B.

點睛:用數列知識解相關的實際問題,關鍵是列出相關信息,合理建立數學模型——數列模型,判斷是等差數列還是等比數列模型;求解時要明確目標,即搞清是求和、求通項、還是解遞推關系問題,所求結論對應的是解方程問題、解不等式問題、還是最值問題,然后將經過數學推理與計算得出的結果放回到實際問題中,進行檢驗,最終得出結論.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= sin2x﹣ cos2x
(1)求f(x)的最小正周期和單調增區間;
(2)若將f(x)的圖象上每一點的橫坐標伸長到原來的兩倍,縱坐標不變,得到函數g(x)的圖象,當x∈[ ]時,求函數g(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數).

(Ⅰ)若曲線在點處的切線與直線垂直,求的值與曲線在點處的切線方程;

(Ⅱ)若,且當時, 恒成立,求的最大值.(

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給定兩個命題,P:對任意實數x都有ax2+ax+10恒成立;Q:關于x的方程x2﹣x+a=0有實數根;如果PQ中有且僅有一個為真命題,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一支車隊有輛車,某天依次出發執行運輸任務。第一輛車于下午時出發,第二輛車于下午分出發,第三輛車于下午分出發,以此類推。假設所有的司機都連續開車,并都在下午時停下來休息.

到下午時,最后一輛車行駛了多長時間?

如果每輛車的行駛速度都是,這個車隊當天一共行駛了多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某運動員每次投籃命中的概率等于 .現采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產生09之間取整數值的隨機數,指定1,23,4表示命中,5,67,89,0,表示不命中;再以每三個隨機數為一組,代表三次投籃的結果.經隨機模擬產生了如下20組隨機數:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據此估計,該運動員三次投籃恰有兩次命中的概率為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數y=f(x)的定義域為R,當x<0時,f(x)>1,且對任意的實數x,y∈R,等式f(x)f(y)=f(x+y)成立,若數列{an}滿足 ,(n∈N*),且a1=f(0),則下列結論成立的是(
A.f(a2013)>f(a2016
B.f(a2014)>f(a2015
C.f(a2016)<f(a2015
D.f(a2014)<f(a2016

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC是斜三角形,內角A、B、C所對的邊的長分別為a、b、c.若csinA= acosC.
(1)求角C;
(2)若c= ,且sinC+sin(B﹣A)=5sin2A,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】正四棱錐(底面為正方形,頂點在底面上的射影是底面的中心)S﹣ABCD的底面邊長為2,高為2,E為邊BC的中點,動點P在表面上運動,并且總保持PE⊥AC,則動點P的軌跡的周長為(
A.
B.
C.3
D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视