【題目】已知函數.
(1)若函數的圖象在點
處的切線方程為
,求
,
的值;
(2)當時,在區間
上至少存在一個
,使得
成立,求實數
的取值范圍.
【答案】(1)m=2,n=﹣1;(2).
【解析】分析:(1)求出函數的導數,結合切點坐標求出,
的值即可;
(2)求出函數的導數,通過討論m的范圍,求出函數的單調區間,從而求出m的范圍即可.
詳解:(1)∵f′(x)=﹣+n,
故f′(0)=n﹣m,即n﹣m=﹣3,
又∵f(0)=m,故切點坐標是(0,m),
∵切點在直線y=﹣3x+2上,
故m=2,n=﹣1;
(2)∵f(x)=+x,∴f′(x)=
,
當m≤0時,f′(x)>0,
故函數f(x)在(﹣∞,1)遞增,
令x0=a<0,此時f(x)<0,符合題意,
當m>0時,即0<m<e時,則函數f(x)在(﹣∞,lnm)遞減,在(lnm,+∞)遞增,
①當lnm<1即0<m<e時,則函數f(x)在(﹣∞,lnm)遞減,在(lnm,1]遞增,
f(x)min=f(lnm)=lnm+1<0,解得:0<m<,
②當lnm>1即m≥e時,函數f(x)在區間(﹣∞,1)遞減,
則函數f(x)在區間(﹣∞,1)上的最小值是f(1)=+1<0,解得:m<﹣e,無解,
綜上,m<,即m的范圍是(﹣∞,
).
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD為梯形,AD∥BC,BC=6,PA=AD=CD=2,E為BC上一點且BE= BC,PB⊥AE.
(1)求證:AB⊥PE;
(2)求二面角B﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)過點M(m,2),其焦點為F,且|MF|=2.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設E為y軸上異于原點的任意一點,過點E作不經過原點的兩條直線分別與拋物線C和圓F:(x﹣1)2+y2=1相切,切點分別為A,B,求證:直線AB過定點F(1,0).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x|+|x﹣1|.
(Ⅰ)若f(x)≥|m﹣1|恒成立,求實數m的最大值M;
(Ⅱ)在(Ⅰ)成立的條件下,正實數a,b滿足a2+b2=M,證明:a+b≥2ab.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A.命題“?x∈R,2x>0”的否定是“?x0∈R,2 <0”
B.命題“若sinx=siny,則x=y”的逆否命題為真命題
C.若命題p,¬q都是真命題,則命題“p∧q”為真命題
D.命題“若△ABC為銳角三角形,則有sinA>cosB”是真命題
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】交通指數是指交通擁堵指數的簡稱,是綜合反映道路網暢通或擁堵的概念性指數值,記交通指數為,其范圍為
,分別有五個級別:
,暢通;
,基本暢通;
,輕度擁堵;
,中度擁堵;
,嚴重擁堵.在晚高峰時段(
),從某市交通指揮中心選取了市區20個交通路段,依據其交通指數數據繪制的頻率分布直方圖如圖所示.
(1)求出輕度擁堵、中度擁堵、嚴重擁堵的路段的個數;
(2)用分層抽樣的方法從輕度擁堵、中度擁堵、嚴重擁堵的路段中共抽取6個路段,求依次抽取的三個級別路段的個數;
(3)從(2)中抽取的6個路段中任取2個,求至少有1個路段為輕度擁堵的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在矩形中
,E為
的中點,將
沿
翻折到
的位置,
平面
,
為
的中點,則在翻折過程中,下列結論正確的是( )
A.恒有 平面
B.B與M兩點間距離恒為定值
C.三棱錐的體積的最大值為
D.存在某個位置,使得平面⊥平面
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com