精英家教網 > 高中數學 > 題目詳情

【題目】阿基米德(公元前287年—公元前212年),偉大的古希臘哲學家、數學家和物理學家,他死后的墓碑上刻著一個“圓柱容球”的立體幾何圖形,為紀念他發現“圓柱內切球的體積是圓柱體積的,且球的表面積也是圓柱表面積的”這一完美的結論.已知某圓柱的軸截面為正方形,其表面積為,則該圓柱的內切球體積為( )

A.B.C.D.

【答案】D

【解析】

設圓柱的底面半徑為,則其母線長為,由圓柱的表面積求出,代入圓柱的體積公式求出其體積,結合題中的結論即可求出該圓柱的內切球體積.

設圓柱的底面半徑為,則其母線長為,

因為圓柱的表面積公式為

所以,解得,

因為圓柱的體積公式為,

所以,

由題知,圓柱內切球的體積是圓柱體積的,

所以所求圓柱內切球的體積為

.

故選:D

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求上的最值;

(2)若,當有兩個極值點時,總有,求此時實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx=ax2+2x+c,若不等式fx<0的解集是{x|-4<x<2}.

1)求fx)的解析式;

2)判斷fx)在(0,+∞)上的單調性,并用定義證明;

3)若函數fx)在區間[m,m+2]上的最小值為-5,求實數m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,橢圓C:(a>b>0)的離心率為,短軸長是2.

(1)求橢圓C的方程;

(2)設橢圓C的下頂點為D,過點D作兩條互相垂直的直線l1,l2,這兩條直線與橢圓C的另一個交點分別為M,N.設l1的斜率為k(k≠0),△DMN的面積為S,當,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,則方程恰有2個不同的實根,實數取值范圍__________________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱側棱和底面垂直的棱柱中,平面側面,,線段AC、上分別有一點E、F且滿足,

求證:

求點E到直線的距離;

求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】科學研究表明:人類對聲音有不的感覺,這與聲音的強度單位:瓦平方米有關在實際測量時,常用單位:分貝來表示聲音強弱的等級,它與聲音的強度I滿足關系式:是常數,其中平方米如風吹落葉沙沙聲的強度平方米,它的強弱等級分貝.

已知生活中幾種聲音的強度如表:

聲音來源

聲音大小

風吹落葉沙沙聲

輕聲耳語

很嘈雜的馬路

強度平方米

強弱等級分貝

10

m

90

am的值

為了不影響正常的休息和睡眠,聲音的強弱等級一般不能超過50分貝,求此時聲音強度I的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點,是函數,)圖象上的任意兩點,且角的終邊經過點,若時,的最小值為

1)求函數的解析式;

2)當時,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的定義域為區間,若對于內任意,都有成立,則稱函數是區間的“函數”.

1)判斷函數)是否是“函數”?說明理由;

2)已知,求證:函數)是“函數”;

3)設函數,()上的“函數”,,且存在使得,試探討函數在區間上零點個數,并用圖象作出簡要的說明(結果不需要證明).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视