精英家教網 > 高中數學 > 題目詳情

【題目】設數列{an}的前n項和Sn滿足:Sn=nan﹣2nn﹣1),首項=1.

(1)求數列{an}的通項公式;

(2)設數列的前n項和為Mn,求證: Mn

【答案】(1)an=4n﹣3;(2)見解析

【解析】

(1)根據和項與通項關系得an=an-1+4,再根據等差數列定義以及通項公式得結果,(2)先根據裂項相消法得Mn,再根據n范圍以及單調性得結果.

解:(1)Sn=nan﹣2nn﹣1),

n≥2時,Sn-1=(n﹣1)an-1﹣2(n﹣1)(n﹣2),

相減可得an=nan﹣2nn﹣1)﹣(n﹣1)an-1+2(n﹣1)(n﹣2),

化為an=an-1+4,

{an}為首項為1,公差為4的等差數列,

即有an=1+4(n﹣1)=4n﹣3;

(2)證明:,

n項和為Mn

在自然數集上遞增,可得n=1時取得最小值,

Mn

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在直角坐標系中,O為坐標原點.動點P在圓 上,過Py軸的垂線,垂足為N,點M在射線NP上,滿足

(1)求點M的軌跡G的方程;

(2)過點的直線l交軌跡G A,B兩點,交圓OC,D兩點.若,求直線l的方程;

(3)設點Q(3, t)(t∈R,t ≠ 0),且,過點P且垂直于OQ的直線mOQ交于點E,與x軸交于點F,求△OEF周長最大時的直線m的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從某小學隨機抽取100名同學,將他們的身高(單位:厘米)數據繪制成頻率分布直方圖(如下圖).由圖中數據可知a=________,估計該小學學生身高的中位數為______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知的三個頂點,其外接圓為圓

(1)若直線過點,且被圓截得的弦長為,求直線的方程;

(2)對于線段(包括端點)上的任意一點,若在以為圓心的圓上都存在不同的兩點,使得點是線段的中點,求圓的半徑的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足(2a+b)cosC+ccosB=0.
(Ⅰ)求角C的大;
(Ⅱ)求sinAcosB的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C經過原點O(0,0)且與直線y=2x﹣8相切于點P(4,0).

(1)求圓C的方程;

(2)已知直線l經過點(4, 5),且與圓C相交于M,N兩點,若|MN|=2,求出直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

(I)求函數的單調區間;

,使不等式成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-5:不等式選講
已知函數f(x)=4﹣|x|﹣|x﹣3|
(Ⅰ)求不等式f(x+ )≥0的解集;
(Ⅱ)若p,q,r為正實數,且 =4,求3p+2q+r的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率,過點A(0,-b)和B(a,0)的直線與坐標原點距離為.

(1)求橢圓的方程;

(2)已知定點E(-1,0),若直線y=kx+2(k≠0)與橢圓相交于C、D兩點,試判斷是否存在k值,使以CD為直徑的圓過定點E?若存在求出這個k值,若不存在說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视