【題目】若函數y=lg(3﹣4x+x2)的定義域為M.當x∈M時,求f(x)=2x+2﹣3×4x的最值及相應的x的值.
【答案】解:y=lg(3﹣4x+x2),
∴3﹣4x+x2>0,
解得x<1或x>3,
∴M={x|x<1,或x>3},
f(x)=2x+2﹣3×4x=4×2x﹣3×(2x)2 .
令2x=t,
∵x<1或x>3,
∴t>8或0<t<2.
∴f(t)=4t﹣3t2=﹣3t2+4t(t>8或0<t<2).
由二次函數性質可知:
當0<t<2時,f(t)∈(﹣4, ],
當t>8時,f(t)∈(﹣∞,﹣160),
當2x=t= ,即x=log2
時,f(x)max=
.
綜上可知:當x=log2 時,f(x)取到最大值為
,無最小值
【解析】根據題意可得M={x|x2﹣4x+3>0}={x|x>3,x<1},f(x)=2x+2﹣3×4x=﹣3(2x)2+42x令t=2x , 則t>8,或0<t<2∴f(t)=﹣3t2+4t利用二次函數在區間(8,+∞)或(0,2)上的最值及x即可
【考點精析】利用函數的最值及其幾何意義和二次函數的性質對題目進行判斷即可得到答案,需要熟知利用二次函數的性質(配方法)求函數的最大(。┲;利用圖象求函數的最大(。┲担焕煤瘮祮握{性的判斷函數的最大(。┲;當時,拋物線開口向上,函數在
上遞減,在
上遞增;當
時,拋物線開口向下,函數在
上遞增,在
上遞減.
科目:高中數學 來源: 題型:
【題目】下面結論正確的是( )
①一個數列的前三項是1,2,3,那么這個數列的通項公式.
②由平面三角形的性質推測空間四面體的性質,這是一種合理推理.
③在類比時,平面中的三角形與空間中的平行六面體作為類比對象較為合適.
④“所有3的倍數都是9的倍數,某數一定是9的倍數,則
一定是9的倍數”,這是三段論推理,但其結論是錯誤的.
A. ①② B. ②③ C. ③④ D. ②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個結論①abc>0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0;
其中正確的結論是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將圓為參數)上的每一點的橫坐標保持不變,縱坐標變為原來的
倍,得到曲線
(1)求出的普通方程;
(2)設直線:
與
的交點為
,
,以坐標原點為極點,
軸正半軸為極軸建立極坐標系,求過線段
的中點且與
垂直的直線的極坐標方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓C:(m>0)的離心率為
,A,B分別為橢圓的左、右頂點,F是其右焦點,P是橢圓C上異于A、B的動點.
(1)求m的值及橢圓的準線方程;
(2)設過點B且與x軸的垂直的直線交AP于點D,當直線AP繞點A轉動時,試判斷以BD為直徑的圓與直線PF的位置關系,并加以證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x|x|+bx+c(b,c∈R),給出如下四個命題:①若c=0,則f(x)為奇函數;②若b=0,則函數f(x)在R上是增函數;③函數y=f(x)的圖象關于點(0,c)成中心對稱圖形;④關于x的方程f(x)=0最多有兩個實根.其中正確的命題
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若無窮數列滿足:
,對于
,都有
(其中
為常數),則稱
具有性質“
”.
(Ⅰ)若具有性質“
”,且
,
,
,求
;
(Ⅱ)若無窮數列是等差數列,無窮數列
是公比為正數的等比數列,
,
,
,判斷
是否具有性質“
”,并說明理由;
(Ⅲ)設既具有性質“
”,又具有性質“
”,其中
,
,
互質,求證:
具有性質“
”.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com