【題目】某地在每周六的晚上8點到10點半舉行燈光展,燈光展涉及到10000盞燈,每盞燈在某一時刻亮燈的概率均為,并且是否亮燈彼此相互獨立.現統計了其中100盞燈在一場燈光展中亮燈的時長(單位:
),得到下面的頻數表:
亮燈時長/ | |||||
頻數 | 10 | 20 | 40 | 20 | 10 |
以樣本中100盞燈的平均亮燈時長作為一盞燈的亮燈時長.
(1)試估計的值;
(2)設表示這10000盞燈在某一時刻亮燈的數目.
①求的數學期望
和方差
;
②若隨機變量滿足
,則認為
.假設當
時,燈光展處于最佳燈光亮度.試由此估計,在一場燈光展中,處于最佳燈光亮度的時長(結果保留為整數).
附:
①某盞燈在某一時刻亮燈的概率等于亮燈時長與燈光展總時長的商;
②若,則
,
,
.
科目:高中數學 來源: 題型:
【題目】海水養殖場進行某水產品的新、舊網箱養殖方法的產量對比,收獲時各隨機抽取了100個網箱,測量各箱水產品的產量(單位:kg), 其頻率分布直方圖如下:
(1)記A表示事件“舊養殖法的箱產量低于50 kg”,估計A的概率;
(2)填寫下面列聯表,并根據列聯表判斷是否有99%的把握認為箱產量與養殖方法有關:
箱產量<50 kg | 箱產量≥50 kg | |
舊養殖法 | ||
新養殖法 |
(3)根據箱產量的頻率分布直方圖,對這兩種養殖方法的優劣進行比較.
附:
P( | 0.050 0.010 0.001 |
k | 3.841 6.635 10.828 |
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(1,)是離心率為
的橢圓C:
(a>b>0)上的一點,斜率為
的直線BD交橢圓C于B、D兩點,且A、B、D三點不重合
(1)求橢圓C的方程;
(2)求證:直線AB,AD的斜率之和為定值
(3)△ABD面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(1)若曲線在
處的切線恰與曲線
相切,求a的值;
(2)不等式對一切正實數x恒成立,求a的取值范圍;
(3)已知,若函數
在
上有且只有一個零點,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,是邊長為6的正方形,已知
,且
并與對角線
交于
,現以
為折痕將正方形折起,且
重合,記
重合后為
,記
重合后為
.
(1)求證:平面平面
;
(2)求平面與平面
所成二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《孫子算經》是中國古代重要的數學著作,書中有一問題:“今有方物一束,外周一匝有三十二枚,問積幾何?”,該著作中提出了一種解決此問題的方法:“重置二位,左位減八,余加右位,至盡虛減一,即得.”通過對該題的研究發現,若一束方物外周一匝的枚數是8的整數倍時,均可采用此方法求解,如圖是解決這類問題的程序框圖,若輸入
,則輸出的結果為( )
A.80B.47C.79D.48
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓過定點
,且與定直線
相切.
(1)求動圓圓心的軌跡
的方程;
(2)過點的任一條直線
與軌跡
交于不同的兩點
,試探究在
軸上是否存在定點
(異于點
),使得
?若存在,求點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近一段時間來,由于受非洲豬瘟的影響,各地豬肉價格普遍上漲,生豬供不應求.各大養豬場正面臨巨大挑戰.目前各項針對性政策措施對于生豬整體產量恢復、激發養殖戶積極性的作用正在逐步顯現.現有甲、乙兩個規模一致的大型養豬場,均養有1萬頭豬,將其中重量(kg)在內的豬分為三個成長階段如下表.
豬生長的三個階段
階段 | 幼年期 | 成長期 | 成年期 |
重量(Kg) |
根據以往經驗,兩個養豬場豬的體重X均近似服從正態分布.由于我國有關部門加強對大型養豬場即將投放市場的成年期豬的監控力度,高度重視成年期豬的質量保證,為了養出健康的成年活豬,甲、乙兩養豬場引入兩種不同的防控及養殖模式.已知甲、乙兩個養豬場內一頭成年期豬能通過質檢合格的概率分別為
,
.
(1)試估算甲養豬場三個階段豬的數量;
(2)已知甲養豬場出售一頭成年期的豬,若為健康合格的豬,則可盈利600元,若為不合格的豬,則虧損100元;乙養豬場出售一頭成年期的豬,若為健康合格的豬,則可盈利500元,若為不合格的豬,則虧損200元.
(。┯Y為甲、乙養豬場各出售一頭成年期豬所得的總利潤,求隨機變量Y的分布列;
(ⅱ)假設兩養豬場均能把成年期豬售完,求兩養豬場的總利潤期望值.
(參考數據:若,
,
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率都為40%.現采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器算出0到9之間取整數值的隨機數,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數為一組,代表三次投籃的結果.經隨機模擬產生了20組隨機數:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據此估計,該運動員三次投籃恰有兩次命中的概率為( )
A.0.35B.0.25C.0.20D.0.15
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com