精英家教網 > 高中數學 > 題目詳情

【題目】設向量a=(4cos α , sin α),b=(sin β , 4cos β),若tan αtan β=16,求證:a//b.

【答案】【解答】
證明:(分析法):要證明a//b ,
a=(4cos α , sin α),b=(sin β , 4cos β);
∴即要證明(4cos α)·(4cos β)=sin αsin β
即要證sin αsin β=16cos αcos β ,
即要證 ,
即要證,
已知,所以結論正確.
(綜合法):∵tan αtan β=16,
,
即sin αsin β=16cos αcos β ,
∴(4cos α)·(4cos β)=sin αsin β
a=(4cos α , sin α)與b=(sin β , 4cos β)共線,
a//b.
【解析】本題主要考查了分析法與綜合法,解決問題的關鍵是(1)分析法證明數學命題時,是從結論出發,尋找使結論成立的充分條件,一定要恰當地用好“要證明”、“只需證明”,“即證′′等詞語.(2)綜合法的優點是易于表達,條理清晰,形式簡捷,故我們一般用分析法尋求解題思想,用綜合法書寫解題過程.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某大學餐飲中心為了了解新生的飲食習慣,利用簡單隨機抽樣的方法在全校一年級學生中進行了抽樣調查,調查結果如表所示:

喜歡甜品

不喜歡甜品

合計

南方學生

60

20

80

北方學生

10

10

20

合計

70

30

100


(1)根據表中數據,問是否有95%的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”;
(2)根據(1)的結論,你能否提出更好的調查方法來了解該校大學新生的飲食習慣,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設a , bc為正數,且不全相等.求證: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某賽季甲、乙兩位運動員每場比賽得分的莖葉圖如圖所示:

(1)從甲、乙兩人的這5次成績中各隨機抽取一個,求甲的成績比乙的成績高的概率;
(2)試用統計學中的平均數、方差知識對甲、乙兩位運動員的測試成績進行分析.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在R上的函數f(x)滿足f(﹣x)=﹣f(x),f(x﹣2)=f(x+2),且x∈(﹣1,0)時, ,則f(log220)=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于數列{an},定義Hn= 為{an}的“優值”,現在已知某數列{an}的“優值”Hn=2n+1 , 記數列{an﹣kn}的前n項和為Sn , 若Sn≤S5對任意的n(n∈N*)恒成立,則實數k的取值范圍為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線l:4x+3y+10=0,半徑為2的圓C與l相切,圓心C在x軸上且在直線l的右上方

(1)求圓C的方程;
(2)過點M(1,0)的直線與圓C交于A,B兩點(A在x軸上方),問在x軸正半軸上是否存在定點N,使得x軸平分∠ANB?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 (a≠0).
(1)已知函數f(x)在點(0,1)處的斜率為1,求a的值;
(2)求函數f(x)的單調區間;
(3)若a>0,g(x)=x2emx , 且對任意的x1 , x2∈[0,2],f(x1)≥g(x2)恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數
(1)求函數y=f(x)的最小正周期;
(2)已知△ABC中,角A,B,C的對邊分別是a,b,c,且a,b,c成等比數列,求f(B)的范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视