已知點,動點
滿足
.
(1)求動點P的軌跡方程;
(2)設(1)中所求軌跡與直線交于點
、
兩點 ,求證
(
為原點)。
科目:高中數學 來源: 題型:解答題
已知橢圓:
的右焦點
在圓
上,直線
交橢圓于
、
兩點.
(1)求橢圓的方程;
(2)若(
為坐標原點),求
的值;
(3)設點關于
軸的對稱點為
(
與
不重合),且直線
與
軸交于點
,試問
的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓:
的右焦點
與拋物線
的焦點重合,過
作與
軸垂直的直線
與橢圓交于S、T兩點,與拋物線交于C、D兩點,且
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點的直線與橢圓
相交于兩點
,設
為橢圓
上一點,且滿足
(
為坐標原點),當
時,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,F1,F2是離心率為的橢圓C:
(a>b>0)的左、右焦點,直線:x=-
將線段F1F2分成兩段,其長度之比為1 : 3.設A,B是C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
橢圓:
的右焦點為
且
為常數,離心率為
,過焦點
、傾斜角為
的直線
交橢圓
與M,N兩點,
(1)求橢圓的標準方程;
(2)當=
時,
=
,求實數
的值;
(3)試問的值是否與直線
的傾斜角
的大小無關,并證明你的結論
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知中心在原點的雙曲線C的右焦點為(2,0),右頂點為
(1)求雙曲線C的方程;
(2)若直線與雙曲線C恒有兩個不同的交點A和B,且
(其中O為原點). 求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設圓的極坐標方程為
,以極點為直角坐標系的原點,極軸為
軸正半軸,兩坐標系長度單位一致,建立平面直角坐標系.過圓
上的一點
作平行于
軸的直線
,設
與
軸交于點
,向量
.
(Ⅰ)求動點的軌跡方程;
(Ⅱ)設點 ,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的長軸長為
,離心率為
,
分別為其左右焦點.一動圓過點
,且與直線
相切.
(1)求橢圓及動圓圓心軌跡
的方程;
(2) 在曲線上有兩點
、
,橢圓
上有兩點
、
,滿足
與
共線,
與
共線,且
,求四邊形
面積的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com