精英家教網 > 高中數學 > 題目詳情

【題目】已知, 表示兩條不同的直線, , 表示三個不同的平面,給出下列四個命題:

, ,則

, ,則

, , ,則

, , ,則

其中正確命題的序號為( )

A. ①② B. ②③ C. ③④ D. ②④

【答案】C

【解析】, , ,則可以垂直,也可以相交不垂直,故不正確;

,相交、平行或異面,故②不正確;,,正確; ,可知與 共線的向量分別是的法向量,所以所成二面角的平面為直角 ,故正確,故選C.

【方法點晴】本題主要考查線面平行的判定與性質、面面垂直的性質及線面垂直的判定,屬于難題.空間直線、平面平行或垂直等位置關系命題的真假判斷,常采用畫圖(尤其是畫長方體)、現實實物判斷法(如墻角、桌面等)、排除篩選法等;另外,若原命題不太容易判斷真假,可以考慮它的逆否命題,判斷它的逆否命題真假,原命題與逆否命題等價.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某研究小組在電腦上進行人工降雨模擬實驗,準備用A、B、C三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其實驗統計結果如下

方式

實施地點

大雨

中雨

小雨

模擬實驗次數

A

2次

6次

4次

12次

B

3次

6次

3次

12次

C

2次

2次

8次

12次

假定對甲、乙、丙三地實施的人工降雨彼此互不影響,且不考慮洪澇災害,請根據統計數據:

1)求甲、乙、丙三地都恰為中雨的概率;

2考慮不同地區的干旱程度,當雨量達到理想狀態時,能緩解旱情,若甲、丙地需中雨或大雨即達到理想狀態,乙地必須是大雨才達到理想狀態,記甲、乙、丙三地中緩解旱情的個數為隨機變量,求的分布列和數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=1+
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性,并證明;
(3)求f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列幾個命題
①奇函數的圖象一定通過原點
②函數y= 是偶函數,但不是奇函數
③函數f(x)=ax1+3的圖象一定過定點P,則P點的坐標是(1,4)
④若f(x+1)為偶函數,則有f(x+1)=f(﹣x﹣1)
⑤若函數f(x)= 在R上的增函數,則實數a的取值范圍為[4,8)
其中正確的命題序號為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數f(x)=x2+2bx+c(b,c∈R).
(1)若函數y=f(x)的零點為﹣1和1,求實數b,c的值;
(2)若f(x)滿足f(1)=0,且關于x的方程f(x)+x+b=0的兩個實數根分別在區間(﹣3,﹣2),(0,1)內,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某科研小組研究發現:一棵水果樹的產量(單位:百千克)與肥料費用(單位:百元)滿足如下關系: .此外,還需要投入其它成本(如施肥的人工費等)百元.已知這種水果的市場售價為16元/千克(即16百元/百千克),且市場需求始終供不應求.記該棵水果樹獲得的利潤為(單位:百元).

(1)求的函數關系式;

當投入的肥料費用為多少時,該水果樹獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足a11, ,其中nN*

1,求證:數列{bn}是等差數列,并求出{an}的通項公式.

2,數列{cncn+2}的前n項和為Tn,是否存在正整數m,使得對于nN*,恒成立?若存在,求出m的最小值;若不存在,請說明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線 的焦點為,圓 .直線與拋物線交于點、兩點,與圓切于點.

(1)當切點的坐標為時,求直線及圓的方程;

(2)當時,證明: 是定值,并求出該定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=( + )x3
(1)求f(x)的定義域.
(2)討論f(x)的奇偶性.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视