【題目】在平面直角坐標系xOy中,直線l的參數方程為 (t為參數),圓C的方程為x2+y2﹣4x﹣2y+4=0.以O為極點,x軸正半軸為極軸建立極坐標系.
(1)求l的普通方程與C的極坐標方程;
(2)已知l與C交于P,Q,求|PQ|.
【答案】
(1)解:圓C的方程為x2+y2﹣4x﹣2y+4=0.
曲線C的標準方程為(x﹣2)2+(y﹣1)2=1.
把x=ρcosθ,y=ρsinθ代入,化簡得:曲線C的極坐標方程為:ρ2﹣4ρcosθ﹣2sinθ+4=0
(2)解:將直線l的參數方程 (t為參數),代入曲線C的方程,得t2﹣3
t+4=0,
t1+t2=3 ,t1t2=4,
∴|PQ|=|t1﹣t2|= =
=
【解析】(1)圓C的方程為x2+y2﹣4x﹣2y+4=0.曲線C的標準方程為(x﹣2)2+(y﹣1)2=1.把x=ρcosθ,y=ρsinθ代入,化簡得:曲線C的極坐標方程.(2)將直線l的參數方程 (t為參數),代入曲線C的方程,得t2﹣3
t+4=0,利用|PQ|=|t1﹣t2|=
即可得出.
科目:高中數學 來源: 題型:
【題目】設D為不等式組 ,表示的平面區域,點B(a,b)為第一象限內一點,若對于區域D內的任一點A(x,y)都有
成立,則a+b的最大值等于( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】方程為x2+y2﹣4x﹣2y+4=0.以O為極點,x軸正半軸為極軸建立極坐標系.
(1)求l的普通方程與C的極坐標方程;
(2)已知l與C交于P,Q,求|PQ|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=x|x|.若存在x∈[1,+∞),使得f(x﹣2k)﹣k<0,則k的取值范圍是( )
A.(2,+∞)
B.(1,+∞)
C.( ,+∞)
D.( ,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率是
,且過點
.直線y=
x+m與橢圓C相交于A,B兩點. (Ⅰ)求橢圓C的方程;
(Ⅱ)求△PAB的面積的最大值;
(Ⅲ)設直線PA,PB分別與y軸交于點M,N.判斷|PM|,|PN|的大小關系,并加以證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 ,x∈R,ω>0.
(1)求函數f(x)的值域;
(2)若函數y=f(x)的圖象與直線y=﹣1的兩個相鄰交點間的距離為 ,求函數y=f(x)的單調區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(x2﹣ax+a)e﹣x , a∈R.
(1)求函數f(x)的單調區間;
(2)設g(x)=f'(x),其中f'(x)為函數f(x)的導函數.判斷g(x)在定義域內是否為單調函數,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com