【題目】本著健康、低碳的生活理念,租用公共自行車騎行的人越來越多.某種公共自行車的租用收費標準為:每次租車不超過1小時免費,超過1小時的部分每小時收費2元(不足1小時的部分按1小時計算).甲、乙兩人相互獨立來租車,每人各租1輛且租用1次.設甲、乙不超過1小時還車的概率分別為和
;1小時以上且不超過2小時還車的概率分別為
和
;兩人租車時間都不會超過3小時.
(1) 求甲、乙兩人所付租車費用相同的概率;
(2) 記甲、乙兩人所付的租車費用之和為隨機變量,求
的分布列和數學期望
.
科目:高中數學 來源: 題型:
【題目】計劃在某水庫建一座至多安裝3臺發電機的水電站,過去50年的水文資料顯示,水庫年入流量(年入流量:一年內上游來水與庫區降水之和.單位:億立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年.將年入流量在以上三段的頻率作為相應段的概率,并假設各年的年入流量相互獨立.
(1)求未來4年中,至多1年的年入流量超過120的概率;
(2)水電站希望安裝的發電機盡可能運行,但每年發電機最多可運行臺數受年入流量限制,并有如下關系:
年入流量 | |||
發電量最多可運行臺數 | 1 | 2 | 3 |
若某臺發電機運行,則該臺年利潤為5000萬元;若某臺發電機未運行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達到最大,應安裝發電機多少臺?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以平面直角坐標系的原點為極點,x軸的正半軸為極軸建立極坐標系.
(1)試分別將曲線C1的極坐標方程ρ=sinθ-cosθ和曲線C2的參數方程(t為參數)化為直角坐標方程和普通方程;
(2)若紅螞蟻和黑螞蟻分別在曲線C1和曲線C2上爬行,求紅螞蟻和黑螞蟻之間的最大距離(視螞蟻為點).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從批量較大的產品中隨機取出10件產品進行質量檢測,若這批產品的不合格率為0.05,隨機變量表示這10件產品中的不合格產品的件數.
(1)問:這10件產品中“恰好有2件不合格的概率”和“恰好有3件不合格的概率
”哪個大?請說明理由;
(2)求隨機變量的數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正四棱錐的側棱和底面邊長相等,在這個正四棱錐的
條棱中任取兩條,按下列方式定義隨機變量
的值:
若這兩條棱所在的直線相交,則的值是這兩條棱所在直線的夾角大小(弧度制);
若這兩條棱所在的直線平行,則;
若這兩條棱所在的直線異面,則的值是這兩條棱所在直線所成角的大小(弧度制).
(1)求的值;
(2)求隨機變量的分布列及數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a>0,函數f(x)=|2x+2|+|x﹣a|的最小值為2.
(1)求實數a的值,并作出y=f(x)的圖象;
(2)當m>0,n>0,且m+n=2時,m2+n2≥f(x)恒成立,求實數x的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com