【題目】如圖,在四棱柱中,
底面
,
,
,且
,
. 點E在棱AB上,平面
與棱
相交于點F.
(Ⅰ)求證:∥平面
;
(Ⅱ)求證:平面
;
(Ⅲ)寫出三棱錐體積的取值范圍. (結論不要求證明)
【答案】(Ⅰ)詳見解析; (Ⅱ)詳見解析;(Ⅲ).
【解析】
試題(Ⅰ)因為是棱柱,所以平面
平面
.由面面平行的性質定理,可得
∥
,再根據線面平行的判定定理即可證明結論;(Ⅱ)在四邊形ABCD中,因為
,
,且
,
,
,利用勾股定理可得,
,又
.又
,根據面面垂直的判定定理即可證明結果;(Ⅲ)由題意可知,三棱錐
的體積的取值范圍是
.
試題解析:(Ⅰ)證明:因為是棱柱,
所以平面平面
.
又因為平面平面
,
平面平面
,
所以∥
. 3分
又平面
,
平面
,
所以∥平面
. 6分
(Ⅱ)證明:在四邊形ABCD中,
因為,
,且
,
,
,
所以,
.
所以,
所以,即
. 7分
因為平面
平面
,
所以.
因為在四棱柱中,
,
所以. 9分
又因為平面
,
,
所以平面
. 11分
(Ⅲ)解:三棱錐的體積的取值范圍是
. 14分.
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,,平面
平面ABC,點D在線段BC上,且
,E,F分別為線段PC,AB的中點,點G是PD上的動點.
(1)證明:.
(2)當平面PAC時,求直線PA與平面EFG所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的焦點在x軸上,一個頂點為,離心率為
,過橢圓的右焦點F的直線l與坐標軸不垂直,且交橢圓于A,B兩點.
求橢圓的方程;
設點C是點A關于x軸的對稱點,在x軸上是否存在一個定點N,使得C,B,N三點共線?若存在,求出定點的坐標;若不存在,說明理由;
設
,是線段
為坐標原點
上的一個動點,且
,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“楊輝三角”是我國數學史上的一個偉大成就,是二項式系數在三角形中的一種幾何排列.如圖所示,第行的數字之和為______;去除所有為1的項,依此構成數列2,3,3,4,6,4,5,10,10,5,則此數列的前46項和為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,將數字1,2,3,…, (
)全部填入一個2行
列的表格中,每格填一個數字,第一行填入的數字依次為
,
,…,
,第二行填入的數字依次為
,
,…,
.記
.
(Ⅰ)當時,若
,
,
,寫出
的所有可能的取值;
(Ⅱ)給定正整數.試給出
,
,…,
的一組取值,使得無論
,
,…,
填寫的順序如何,
都只有一個取值,并求出此時
的值;
(Ⅲ)求證:對于給定的以及滿足條件的所有填法,
的所有取值的奇偶性相同.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平行四邊形所在的平面與直角梯形
所在的平面垂直,
,
,且
,
,
,
為
的中點.
(1)求證:平面
;
(2)求證:;
(3)若直線上存在點
,使得
,
所成角的余弦值為
,求
與平面
所成角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在等比數列{an}中,a1=2,且a1,a2,a3-2成等差數列.
(1)求數列{an}的通項公式;
(2)若數列{bn}滿足:,求數列{bn}的前n項和Sn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設a,b,c為實數,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).記集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若{S},{T}分別為集合S,T 的元素個數,則下列結論不可能的是( )
A.{S}=1且{T}=0B.{S}=1且{T}=1C.{S}=2且{T}=2D.{S}=2且{T}=3
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com