(Ⅰ)試用a表示點P的坐標.
(Ⅱ)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;
(Ⅲ)設min{y1,y2,…,yn}為y1,y2,…,yn中最小的一個.設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,求函數f(a)=min{g(a),S(a)}的表達式.
(Ⅰ)解:將y=![]() ![]() 化簡得 b2x4-a2b2x2+a2=0, 由條件,有Δ=a4b4-4a2b2=0 得ab=2 解得 故P的坐標為( (Ⅱ)解:∵在△ABP中,|AB|=2 ∴S(a)= ∵a>b>0,b= 即a> 故△ABP的面積函數S(a)的值域為(0, (Ⅲ)解:g(a)=c2=a2-b2=a2- 解不等式:g(a)≥S(a), 即a2- 整理得:a8-10a4+24≥0, 即(a4-4)(a4-6)≥0, 即(a4-4)(a4-6)≥0 解得:a≤ 故f(a)=min{g(a),S(a)}= |
科目:高中數學 來源: 題型:
設橢圓C1的方程為(a>b>0),曲線C2的方程為y=
,且曲線C1與C2在第一象限內只有一個公共點P.
(1)試用a表示點P的坐標;
(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;
(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個. 設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=
,且曲線C1與C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數學 來源: 題型:
(Ⅰ)試用a表示點P的坐標.
(Ⅱ)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;
(Ⅲ)設min{y1,y2,…,yn}為y1,y2,…,yn中最小的一個設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試函數f(a)=min{g(a),S(a)}的表達式.
查看答案和解析>>
科目:高中數學 來源: 題型:
(Ⅰ)試用a表示點P的坐標.
(Ⅱ)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;
(Ⅲ)設min{y1,y2,…,yn}為y1,y2,…,yn中最小的一個設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試函數f(a)=min{g(a),S(a)}的表達式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com