已知兩點及
,點
在以
、
為焦點的橢圓
上,且
、
、
構成等差數列.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,動直線與橢圓
有且僅有一個公共點,點
是直線
上的兩點,且
,
. 求四邊形
面積
的最大值.
(1);(2)
解析
試題分析:(1)確定橢圓標準方程 ,先定位后定量.由等差中項得,根據橢圓定義
,得
,又
,所以可求
,由橢圓焦點在
軸,寫出橢圓方程;(2)將直線方程和橢圓方程聯立,并利用
列方程,得
的等式
,求四邊形
面積
的最大值,關鍵在于建立關于面積
的目標函數,然后確定函數的最大值即可,分
和
討論,當
時,結合平面幾何知識,得
(其中
表示兩焦點到直線
的距離),再結合
得關于
的函數,并求其范圍;當
時,該四邊形是矩形,求其面積,從而確定
的范圍,進而確定最大值.
試題解析:(1)依題意,設橢圓的方程為
.
構成等差數列,
,
.
又,
.
橢圓
的方程為
.
(2) 將直線的方程
代入橢圓
的方程
中,得
,由直線
與橢圓
僅有一個公共點知,
,化簡得:
.
設,
, (法一)當
時,設直線
的傾斜角為
,則
,
,
,
,
當
時,
,
,
.當
時,四邊形
是矩形,
.所以四邊形
面積
的最大值為
.
(法二),
.
.
四邊形的面積
科目:高中數學 來源: 題型:解答題
已知橢圓的左、右焦點分別為
、
,
為原點.
(1)如圖1,點為橢圓
上的一點,
是
的中點,且
,求點
到
軸的距離;
(2)如圖2,直線與橢圓
相交于
、
兩點,若在橢圓
上存在點
,使四邊形
為平行四邊形,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知中心在原點的橢圓的離心率
,一條準線方程為
(1)求橢圓的標準方程;
(2)若以>0)為斜率的直線
與橢圓
相交于兩個不同的點
,且線段
的垂直平分線與兩坐標軸圍成的三角形的面積為
,求
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓E:=1(
)過點M(2,
), N(
,1),
為坐標原點
(I)求橢圓E的方程;
(II)是否存在以原點為圓心的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程;若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的頂點在坐標原點,焦點為,點
是點
關于
軸的對稱點,過點
的直線交拋物線于
兩點。
(Ⅰ)試問在軸上是否存在不同于點
的一點
,使得
與
軸所在的直線所成的銳角相等,若存在,求出定點
的坐標,若不存在說明理由。
(Ⅱ)若的面積為
,求向量
的夾角;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,已知圓為圓上一動點,點
是線段
的垂直平分線與直線
的交點.
(1)求點的軌跡曲線
的方程;
(2)設點是曲線
上任意一點,寫出曲線
在點
處的切線
的方程;(不要求證明)
(3)直線過切點
與直線
垂直,點
關于直線
的對稱點為
,證明:直線
恒過一定點,并求定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線,
、
是雙曲線的左右頂點,
是雙曲線上除兩頂點外的一點,直線
與直線
的斜率之積是
,
求雙曲線的離心率;
若該雙曲線的焦點到漸近線的距離是,求雙曲線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,已知橢圓
的左焦點為
,且橢圓
的離心率
.
(1)求橢圓的方程;
(2)設橢圓的上下頂點分別為
,
是橢圓
上異于
的任一點,直線
分別交
軸于點
,證明:
為定值,并求出該定值;
(3)在橢圓上,是否存在點
,使得直線
與圓
相交于不同的兩點
,且
的面積最大?若存在,求出點
的坐標及對應的
的面積;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com