精英家教網 > 高中數學 > 題目詳情
f(x)=
xx+1
,定義f1(x)=f(x),f2(x)=f1(f(x)),f3(x)=f2(f(x)),…,fn(x)=fn-1(f(x)),(n≥2,n∈N)則f100(x)=1的解為x=
 
分析:觀察所給的前四項的結構特點,先觀察分子,只有一項組成,并且沒有變化,在觀察分母,有兩部分組成,是一個一次函數,根據一次函數的一次項系數與常數項的變化特點,得到fn(x)=f(fn-1(x))=
x
nx+1
;從而得出結果.
解答:解:∵函數f(x)=
x
x+1
觀察:
f1(x)=f(x)=
x
x+1
,
f2(x)=f1(f(x))=
x
2x+1
;
f3(x)=f2(f(x))=
x
3x+1

f4(x)=f3(f(x))=
x
4x+1

所給的函數式的分子不變都是x,
而分母是由兩部分的和組成,
第一部分的系數分別是x,2x,3x,4x…nx,
第二部分的數1
∴fn(x)=fn-1(f(x))=
x
nx+1

∴f100(x)=
x
100x+1
=1;
∴x=-
1
99

故答案為:-
1
99
點評:本題考查歸納推理,實際上本題考查的重點是給出一個數列的前幾項寫出數列的通項公式,本題是一個綜合題目,知識點結合的比較巧妙.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在平行四邊形OABC中,已知過點C的直線與線段OA,OB分別相交于點M,N.若
OM
=x
OA
ON
=y
OB

(1)求證:x與y的關系為y=
x
x+1
;
(2)設f(x)=
x
x+1
,定義在R上的偶函數F(x),當x∈[0,1]時F(x)=f(x),且函數F(x)圖象關于直線x=1對稱,求證:F(x+2)=F(x),并求x∈[2k,2k+1](k∈N)時的解析式;
(3)在(2)的條件下,不等式F(x)<-x+a在x∈[2k,2k+1](k∈N)上恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

在平行四邊形OABC中,已知過點C的直線與線段OA,OB分別相交于點M,N.若
OM
=x
OA
,
ON
=y
OB

(1)求證:x與y的關系為y=
x
x+1

(2)設f(x)=
x
x+1
,定義函數F(x)=
1
f(x)
-1(0<x≤1)
,點列Pi(xi,F(xi))(i=1,2,…,n,n≥2)在函數F(x)的圖象上,且數列{xn}是以首項為1,公比為
1
2
的等比數列,O為原點,令
OP
=
OP1
+
OP2
+…+
OPn
,是否存在點Q(1,m),使得
OP
OQ
?若存在,請求出Q點坐標;若不存在,請說明理由.
(3)設函數G(x)為R上偶函數,當x∈[0,1]時G(x)=f(x),又函數G(x)圖象關于直線x=1對稱,當方程G(x)=ax+
1
2
在x∈[2k,2k+2](k∈N)上有兩個不同的實數解時,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
x
x+1
,若數列{an}(n∈N*)滿足:a1=1,an+1=f(an
(1)求數列{an}的通項公式;
(2)設數列{cn}滿足:cn=
2n
an
,求數列{cn}的前n項的和Sn

查看答案和解析>>

科目:高中數學 來源:長寧區二模 題型:解答題

在平行四邊形OABC中,已知過點C的直線與線段OA,OB分別相交于點M,N.若
OM
=x
OA
,
ON
=y
OB

(1)求證:x與y的關系為y=
x
x+1
;
(2)設f(x)=
x
x+1
,定義函數F(x)=
1
f(x)
-1(0<x≤1)
,點列Pi(xi,F(xi))(i=1,2,…,n,n≥2)在函數F(x)的圖象上,且數列{xn}是以首項為1,公比為
1
2
的等比數列,O為原點,令
OP
=
OP1
+
OP2
+…+
OPn
,是否存在點Q(1,m),使得
OP
OQ
?若存在,請求出Q點坐標;若不存在,請說明理由.
(3)設函數G(x)為R上偶函數,當x∈[0,1]時G(x)=f(x),又函數G(x)圖象關于直線x=1對稱,當方程G(x)=ax+
1
2
在x∈[2k,2k+2](k∈N)上有兩個不同的實數解時,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视