精英家教網 > 高中數學 > 題目詳情
定義:若數列{an}對任意的正整數n,都有|an+1|+|an|=d(d為常數),則稱{an}為“絕對和數列”,d叫做“絕對公和”,已知“絕對和數列”{an}中,a1=2,“絕對公和”d=2,則其前2012項和S2012的最小值為(  )
分析:利用“絕對和數列”的定義寫出數列的前幾項找出規律,得出a1=|a3|=|a5|=..=|a2009|=|a2011|=2,a2=a4=…=a2012=0,為使和最小,令非0的數都取-2,由此可得結論.
解答:解:∵|an+1|+|an|=2,a1=2,∴a2=0
同理可得|a3|=2,a4=0,|a5|=0…
∴a1=|a3|=|a5|=…=|a2009|=|a2011|=2,a2=a4=…=a2012=0
為使前2012項和S2012的最小值,則a3=a5=…=a2011=-2
∴前2012項和S2012的最小值為2+(-2)×2005=-2008
故選A
點評:本題考查數列求和,考查學生的分析能力,解題的關鍵是確定a1=|a3|=|a5|=…=|a2009|=|a2011|=2,a2=a4=…=a2012=0,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義:若數列{An}滿足An+1=An2,則稱數列{An}為“平方數列”.已知數列{an}中,a1=2,點(an,an+1)在函數f(x)=2x2+2x的圖象上,其中n為正整數.
(1)證明:數列{2an+1}是“平方數列”,且數列{lg(2an+1)}為等比數列.
(2)設(1)中“平方數列”的前n項之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數列{an}的通項及Tn關于n的表達式.
(3)記bn=log2an+1Tn,求數列{bn}的前n項之和Sn,并求使Sn>4020的n的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•石景山區一模)定義:若數列{An}滿足An+1=An2,則稱數列{An}為“平方遞推數列”.已知數列{an}中,a1=2,點(an,an+1)在函數f(x)=2x2+2x的圖象上,其中n為正整數.
(1)證明:數列{2an+1}是“平方遞推數列”,且數列{lg(2an+1)}為等比數列.
(2)設(1)中“平方遞推數列”的前n項之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數列{an}的通項及Tn關于n的表達式.
(3)記bn=log2an+1Tn,求數列{bn}的前n項之和Sn,并求使Sn>2011的n的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義:若數列{An}滿足An+1=
A
2
n
則稱數列{An}為“平方遞推數列”,已知數列{an}中,a1=2,點{an,an+1}在函數f(x)=2x2+2x的圖象上,其中n的正整數.
(1)證明數列{2an+1}是“平方遞推數列”,且數列{lg(2an+1)}為等比數列;
(2)設(1)中“平方遞推數列”的前n項之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數列{an}的通項及Tn關于n的表達式;
(3)記bn=log2an+1Tn,求數列{bn}的前n項和Sn,并求使Sn>2008的n的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•長寧區一模)定義:若數列{An}滿足An+1=An2,則稱數列{An}為“平方遞推數列”.已知數列{an}中,a1=2,點(an,an+1)在函數f(x)=x2+4x+2的圖象上,其中n為正整數.
(1)判斷數列{an+2}是否為“平方遞推數列”?說明理由.
(2)證明數列{lg(an+2)}為等比數列,并求數列{an}的通項.
(3)設Tn=(2+a1)(2+a2)…(2+an),求Tn關于n的表達式.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视