【題目】已知f(x)=lnx+ x2 .
(1)求曲線f(x)在x=1處的切線方程;
(2)設P為曲線f(x)上的點,求曲線C在點P處切線的斜率的最小值及傾斜角α的取值范圍.
科目:高中數學 來源: 題型:
【題目】如圖,兩個正方形 和
所在平面互相垂直,設
分別是
和
的中點,那么
① ; ②
平面
;③
;④
異面,其中假命題的個數為( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 且滿足a1= ,2Sn﹣SnSn﹣1=1(n≥2).
(1)求S1 , S2 , S3 , S4并猜想Sn的表達式(不必寫出證明過程);
(2)設bn= ,n∈N*,求bn的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 的左右頂點分別為A,B,點P為橢圓上異于A,B的任意一點.
(Ⅰ)求直線PA與PB的斜率之積;
(Ⅱ)過點 作與x軸不重合的任意直線交橢圓E于M,N兩點.證明:以MN為直徑的圓恒過點A.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,三棱錐V﹣ABC中,VA=VB=AC=BC=2,AB=2 ,VC=1,線段AB的中點為D.
(1)求證:平面VCD⊥平面ABC;
(2)求三棱錐V﹣ABC的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點H(x0 , y0)在圓C:x2+y2+Dx+Ey+F=0(其中點C為圓心,D2+E2﹣4F>0)外,由點H向圓C引切線,其中一個切點為M.
求證:|HM|= ;
(1)已知點H(x0 , y0)在圓C:x2+y2+Dx+Ey+F=0(其中點C為圓心,D2+E2﹣4F>0)外,由點H向圓C引切線,其中一個切點為M.
求證:|HM|= ;
(2)如圖,P是直線x=4上一動點,以P為圓心的圓P經定點B(1,0),直線l是圓P在點B處的切線,過A(﹣1,0)作圓P的兩條切線分別與l交于E,F兩點.
求證:|EA|+|EB|為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設Sn為數列{cn}的前n項和,an=2n , bn=50﹣3n,cn= .
(1)求c4與c8的等差中項;
(2)當n>5時,設數列{Sn}的前n項和為Tn .
(。┣骉n;
(ⅱ)當n>5時,判斷數列{Tn﹣34ln}的單調性.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com