【題目】學校游園活動有這樣一個游戲項目:甲箱子里裝有3個白球、2個黑球,乙箱子里裝有1個白球、2個黑球,這些球除顏色外完全相同.每次游戲從這兩個箱子里各隨機摸出2個球,若摸出的白球不少于2個,則獲獎.(每次游戲結束后將球放回原箱)
(1)求在1次游戲中,
①摸出3個白球的概率;
②獲獎的概率;
(2)求在2次游戲中獲獎次數的分布列.
科目:高中數學 來源: 題型:
【題目】2019年4月22日是第50個世界地球日,半個世紀以來,這一呼吁熱愛地球環境的運動已經演變為席卷全球的綠色風暴,讓越來越多的人認識到保護環境、珍惜自然對人類未來的重要性.今年,自然資源部地球日的主題是“珍愛美麗地球,守護自然資源”.某中學舉辦了以“珍愛美地球,守護自然資源”為主題的知識競賽.賽后從該校高一和高二年級的參賽者中隨機抽取100人,將他們的競賽成績分為7組:[30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],并得到如下頻率分布表:
現規定,“競賽成績≥80分”為“優秀”“競賽成績<80分”為“非優秀”
(Ⅰ)請將下面的2×2列聯表補充完整;
優秀 | 非優秀 | 合計 | |
高一 | 50 | ||
高二 | 15 | ||
合計 | 100 |
(Ⅱ)判斷是否有99%的把握認為“競賽成績與年級有關”?
附:獨立性檢驗界值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的半焦距為
,圓
與橢圓
有且僅有兩個公共點,直線
與橢圓
只有一個公共點.
(1)求橢圓的標準方程;
(2)已知動直線過橢圓
的左焦點
,且與橢圓
分別交于
兩點,試問:
軸上是否存在定點
,使得
為定值?若存在,求出該定值和點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程是
(
為參數),以該直角坐標系的原點
為極點,
軸的正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)寫出曲線的普通方程和直線
的直角坐標方程;
(2)設點,直線
與曲線
相交于
兩點,且
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點
,直線
,設圓
的半徑為1, 圓心在
上.
(1)若圓心也在直線
上,過點
作圓
的切線,求切線方程;
(2)若圓上存在點
,使
,求圓心
的橫坐標
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓:
,點
,直線
.
(1)求與圓相切,且與直線
垂直的直線方程;
(2)在直線上(
為坐標原點),存在定點
(不同于點
),滿足:對于圓
上的任一點
,都有
為一常數,試求出所有滿足條件的點
的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com