【題目】定義在R上的可導函數滿足
,記
的導函數為
,當
時恒有
.若
,則m的取值范圍是( )
A.B.
C.
D.
【答案】D
【解析】
令g(x)=f(x)x,求得g(x)=g(2﹣x),則g(x)關于x=1對稱,再由導數可知g(x)在
時為減函數,化f(m)﹣f(1﹣2m)≥3m﹣1為g(m)≥g(1﹣2m),利用單調性及對稱性求解.
令g(x)=f(x)x,
g′(x)=f′(x)﹣1,當x1時,恒有f'(x)<1.
∴當x1時,g(x)為減函數,
而g(2﹣x)=f(2﹣x)(2﹣x),
∴由得到
f(2﹣x)(2﹣x)=f(x)
x
∴g(x)=g(2﹣x).
則g(x)關于x=1對稱,
由f(m)﹣f(1﹣2m)≥3m﹣1,得f(m)m≥f(1﹣2m)
(1﹣2m),
即g(m)≥g(1﹣2m),
∴,即
1
.
∴實數m的取值范圍是[﹣1,].
故選:D.
科目:高中數學 來源: 題型:
【題目】已知拋物線過點
,且P到拋物線焦點的距離為2直線
過點
,且與拋物線相交于A,B兩點.
(Ⅰ)求拋物線的方程;
(Ⅱ)若點Q恰為線段AB的中點,求直線的方程;
(Ⅲ)過點作直線MA,MB分別交拋物線于C,D兩點,請問C,D,Q三點能否共線?若能,求出直線
的斜率
;若不能,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數方程為(t為參數),以原點O為極點,x正半軸為極軸建立極坐標系,曲線的極坐標方程為
.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)設P(0,-1),直線l與C的交點為M,N,線段MN的中點為Q,求.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知以為首項的數列
滿足:
(1)當,
時,求數列
的通項公式;
(2)當,
時,試用
表示數列
前100項的和
;
(3)當(
是正整數),
,正整數
時,判斷數列
,
,
,
是否成等比數列?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數方程為(t為參數),以原點O為極點,x正半軸為極軸建立極坐標系,曲線的極坐標方程為
.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)設P(0,-1),直線l與C的交點為M,N,線段MN的中點為Q,求.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校在一次期末數學測試中,為統計學生的考試情況,從學校的2000名學生中隨機抽取50名學生的考試成績,被測學生成績全部介于65分到145分之間(滿分150分),將統計結果按如下方式分成八組:第一組,
,第二組
,
,
第八組
,
,如圖是按上述分組方法得到的頻率分布直方圖的一部分.
(1)求第七組的頻率,并完成頻率分布直方圖;
(2)用樣本數據估計該校的2000名學生這次考試成績的平均分(同一組中的數據用該組區間的中點值代表該組數據平均值);
(3)若從樣本成績屬于第六組和第八組的所有學生中隨機抽取2名,求他們的分差的絕對值小于10分的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com