【題目】已知橢圓 的右焦點到直線
的距離為
,離心率
,A,B是橢圓上的兩動點,動點P滿足
,(其中λ為常數).
(1)求橢圓標準方程;
(2)當λ=1且直線AB與OP斜率均存在時,求|kAB|+|kOP|的最小值;
(3)若G是線段AB的中點,且kOAkOB=kOGkAB , 問是否存在常數λ和平面內兩定點M,N,使得動點P滿足PM+PN=18,若存在,求出λ的值和定點M,N;若不存在,請說明理由.
【答案】
(1)解:由題設可知: ,解得
,b=2.
∴橢圓標準方程為
(2)解:設A(x1,y1),B(x2,y2)則由 ,得P(x1+x2,y1+y2).
∴ .
由|kAB|∈(0,+∞)得, ,
當且僅當 時取等號
(3)解:∵ =
.
∴ .∴4x1x2+9y1y2=0.
設P(x,y),則由 ,
得(x,y)=(x1,y1)+λ(x2,y2)=(x1+λx2,y1+λy2),
即x=x1+λx2,y=y1+λy2.
∵點A、B在橢圓4x2+9y2=36上,
∴4x2+9y2=36+36λ2+2λ(4x1x2+9y1y2).
∴4x2+9y2=36+36λ2.
即 ,
∴P點是橢圓 上的點,
設該橢圓的左、右焦點為M、N,
則由橢圓的定義PM+PN=18,得18= ,
∴ ,
,
.
∴存在常數λ= ,和平面內兩定點M(
,0),N(
,0),使得動點P滿足PM+PN=18
【解析】(1)由已知列關于a,b,c的方程組,求解方程組可得橢圓標準方程;(2)設出A,B的坐標,把λ=1代入 ,求得P的坐標,求出AB、OP的斜率并作積,結合絕對值的不等式求解|kAB|+|kOP|的最小值;(3)設P(x,y),則由
,得x=x1+λx2 , y=y1+λy2 . 再由點A、B在橢圓4x2+9y2=36上,得到
,說明P點是橢圓
上的點,設該橢圓的左、右焦點為M、N,則由橢圓的定義PM+PN=18,得18=
,由此求得λ值.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+2bx+c,且f(1)=f(3)=﹣1.設a>0,將函數f(x)的圖象先向右平移a個單位長度,再向下平移a2個單位長度,得到函數g(x)的圖象. (Ⅰ)若函數g(x)有兩個零點x1 , x2 , 且x1<4<x2 , 求實數a的取值范圍;
(Ⅱ)設連續函數在區間[m,n]上的值域為[λ,μ],若有 ,則稱該函數為“陡峭函數”.若函數g(x)在區間[a,2a]上為“陡峭函數”,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖:四棱錐P﹣ABCD中,底面ABCD是平行四邊形,且AC=BD,PA⊥底面ABCD,PA=AB=1, ,點F是PB的中點,點E在邊BC上移動.
(1)證明:當點E在邊BC上移動時,總有EF⊥AF;
(2)當CE等于何值時,PA與平面PDE所成角的大小為45°.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C對應的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1. (Ⅰ)求角A的大;
(Ⅱ)若△ABC的面積S=5 ,b=5,求sinBsinC的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是正方體的平面展開圖,在這個正方體中, ①BM與ED平行;
②CN與BE是異面直線;
③CN與BM成60°角;
④DM與BN垂直.
以上四個命題中,正確命題的序號是( )
A.③
B.③④
C.①③
D.①③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,AB∥CD,∠ADC=90°,PD=AD=AB=1,DC=2.
(1)求證:BC⊥平面PBD;
(2)求二面角A﹣PB﹣C的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線E的中心為原點,P(3,0)是E的焦點,過P的直線l與E相交于A,B兩點,且AB的中點為N(﹣12,﹣15),則E的方程式為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求證:PC⊥BC;
(2)求點A到平面PBC的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com