(本題滿分18分)本題共有3個小題,第1小題滿分5分,第2小題滿分5分,第3小題滿分8分。
已知是公差為
的等差數列,
是公比為
的等比數列。
(1) 若,是否存在
,有
說明理由;
(2) 找出所有數列和
,使對一切
,
,并說明理由;
(3) 若試確定所有的
,使數列
中存在某個連續
項的和是數列
中的一項,請證明。
解析:[解法一](1)由,得
, ......2分
整理后,可得,
、
,
為整數,
不存在
、
,使等式成立。 ......5分
(2)若,即
, (*)
()若則
。
當{}為非零常數列,{
}為恒等于1的常數列,滿足要求。 ......7分
()若,(*)式等號左邊取極限得
,(*)式等號右邊的極限只有當
時,才能等于1。此時等號左邊是常數,
,矛盾。
綜上所述,只有當{}為非零常數列,{
}為恒等于1的常數列,滿足要求。......10分
【解法二】設
則
(i) 若d=0,則
(ii) 若(常數)即
,則d=0,矛盾
綜上所述,有, 10分
(3)
設.
,
. 13分
取 15分
由二項展開式可得正整數M1、M2,使得(4-1)2s+2=4M1+1,
故當且僅當p=3s,sN時,命題成立.
說明:第(3)題若學生從以下角度解題,可分別得部分分(即分步得分)
若p為偶數,則am+1+am+2+……+am+p為偶數,但3k為奇數
故此等式不成立,所以,p一定為奇數。
當p=1時,則am+1=bk,即4m+5=3k,
而3k=(4-1)k
=
當k為偶數時,存在m,使4m+5=3k成立 1分
當p=3時,則am+1+am+2+am+3=bk,即3am+2-bk,
也即3(4m+9)=3k,所以4m+9=3k-1,4(m+1)+5=3k-1
由已證可知,當k-1為偶數即k為奇數時,存在m, 4m+9=3k成立 2分
當p=5時,則am+1+am+2+……+am+5=bk,即5am+3=bk
也即5(4m+13)=3k,而3k不是5的倍數,所以,當p=5時,所要求的m不存在
故不是所有奇數都成立. 2分
科目:高中數學 來源: 題型:
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標系中,已知為坐標原點,點
的坐標為
,點
的坐標為
,其中
且
.設
.
(1)若,
,
,求方程
在區間
內的解集;
(2)若點是過點
且法向量為
的直線
上的動點.當
時,設函數
的值域為集合
,不等式
的解集為集合
. 若
恒成立,求實數
的最大值;
(3)根據本題條件我們可以知道,函數的性質取決于變量
、
和
的值. 當
時,試寫出一個條件,使得函數
滿足“圖像關于點
對稱,且在
處
取得最小值”.(說明:請寫出你的分析過程.本小題將根據你對問題探究的完整性和在研究過程中所體現的思維層次,給予不同的評分.)
查看答案和解析>>
科目:高中數學 來源:上海市普陀區2010屆高三第二次模擬考試理科數學試題 題型:解答題
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標系中,已知為坐標原點,點
的坐標為
,點
的坐標為
,其中
且
.設
.
(1)若,
,
,求方程
在區間
內的解集;
(2)若點是過點
且法向量為
的直線
上的動點.當
時,設函數
的值域為集合
,不等式
的解集為集合
. 若
恒成立,求實數
的最大值;
(3)根據本題條件我們可以知道,函數的性質取決于變量
、
和
的值. 當
時,試寫出一個條件,使得函數
滿足“圖像關于點
對稱,且在
處
取得最小值”.(說明:請寫出你的分析過程.本小題將根據你對問題探究的完整性和在研究過程中所體現的思維層次,給予不同的評分.)
查看答案和解析>>
科目:高中數學 來源:2011-2012學年上海市長寧區高三教學質量測試理科數學 題型:解答題
(本小題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
(文)已知數列中,
(1)求證數列不是等比數列,并求該數列的通項公式;
(2)求數列的前
項和
;
(3)設數列的前
項和為
,若
對任意
恒成立,求
的最小值.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年上海市長寧區高三教學質量測試理科數學 題型:解答題
本小題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
設函數是定義域為R的奇函數.
(1)求k值;
(2)(文)當時,試判斷函數單調性并求不等式f(x2+2x)+f(x-4)>0的解集;
(理)若f(1)<0,試判斷函數單調性并求使不等式恒成立的
的取值范圍;
(3)若f(1)=,且g(x)=a 2x+a - 2x-2m f(x) 在[1,+∞)上的最小值為-2,求m的值.
查看答案和解析>>
科目:高中數學 來源:上海市普陀區2010屆高三第二次模擬考試理科數學試題 題型:解答題
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標系中,已知為坐標原點,點
的坐標為
,點
的坐標為
,其中
且
.設
.
(1)若,
,
,求方程
在區間
內的解集;
(2)若點是過點
且法向量為
的直線
上的動點.當
時,設函數
的值域為集合
,不等式
的解集為集合
. 若
恒成立,求實數
的最大值;
(3)根據本題條件我們可以知道,函數的性質取決于變量
、
和
的值. 當
時,試寫出一個條件,使得函數
滿足“圖像關于點
對稱,且在
處
取得最小值”.(說明:請寫出你的分析過程.本小題將根據你對問題探究的完整性和在研究過程中所體現的思維層次,給予不同的評分.)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com