(2009山東卷文) (本小題滿分14分)
設,在平面直角坐標系中,已知向量
,向量
,
,動點
的軌跡為E.
(1)求軌跡E的方程,并說明該方程所表示曲線的形狀;
(2)已知,證明:存在圓心在原點的圓,使得該圓的任意一條切線與軌跡E恒有兩個交點A,B,且
(O為坐標原點),并求出該圓的方程;
(3)已知,設直線
與圓C:
(1<R<2)相切于A1,且
與軌跡E只有一個公共點B1,當R為何值時,|A1B1|取得最大值?并求最大值.
當m=0時,方程表示兩直線,方程為;
當時, 方程表示的是圓
當且
時,方程表示的是橢圓;
當時,方程表示的是雙曲線.
1
解(1)因為,
,
,
所以, 即
.
程
(2).當時, 軌跡E的方程為
,設圓心在原點的圓的一條切線為
,解方程組
得
,即
,
要使切線與軌跡E恒有兩個交點A,B,
則使△=,
即,即
, 且
,
要使, 需使
,即
,
所以, 即
且
, 即
恒成立.
所以又因為直線為圓心在原點的圓的一條切線,
所以圓的半徑為,
, 所求的圓為
.
當切線的斜率不存在時,切線為,與
交于點
或
也滿足
.
綜上, 存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且
.
(3)當時,軌跡E的方程為
,設直線
的方程為
,因為直線
與圓C:
(1<R<2)相切于A1, 由(2)知
, 即
①,
因為與軌跡E只有一個公共點B1,
由(2)知得
,
即有唯一解
則△=, 即
, ②
由①②得, 此時A,B重合為B1(x1,y1)點,
由 中
,所以,
,
B1(x1,y1)點在橢圓上,所以,所以
,
在直角三角形OA1B1中,因為
當且僅當
時取等號,所以
,即
當時|A1B1|取得最大值,程
科目:高中數學 來源: 題型:
(2009山東卷文)已知α,β表示兩個不同的平面,m為平面α內的一條直線,則“”是“
”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
(2009山東卷文)已知α,β表示兩個不同的平面,m為平面α內的一條直線,則“”是“
”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
(2009山東卷文)(本小題滿分14分)
設,在平面直角坐標系中,已知向量
,向量
,
,動點
的軌跡為E.
(1)求軌跡E的方程,并說明該方程所表示曲線的形狀;
(2)已知,證明:存在圓心在原點的圓,使得該圓的任意一條切線與軌跡E恒有兩個交點A,B,且
(O為坐標原點),并求出該圓的方程;
(3)已知,設直線
與圓C:
(1<R<2)相切于A1,且
與軌跡E只有一個公共點B1,當R為何值時,|A1B1|取得最大值?并求最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com