【題目】甲、乙兩人從1,2,…,15這15個數中,依次任取一個數(不放回).則在已知甲取到的數是5的倍數的情況下,甲所取的數大于乙所取的數的概率是( )
A.
B.
C.
D.
【答案】D
【解析】解:甲、乙兩人從1,2,…,15這15個數中,依次任取一個數(不放回).
甲取到的數是5的倍數,
則甲、乙取到的數(a,b)共有42個,分別是:
(5,1),(5,2),(5,3),(5,4),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),
(10,1),(10,2),(10,3),(10,4),(10,5),(10,6),(10,7),(10,8),(10,9),(10,11),(10,12),(10,13),(10,14),(10,15),
(15,1),(15,2),(15,3),(15,4),(15,5),(15,6),(15,7),(15,8),(15,9),(15,10),(15,11),(15,12),(15,13),(15,14),
其中甲所取的數大于乙所取的數的個數有27個,分別是:
(5,1),(5,2),(5,3),(5,4),(10,1),(10,2),(10,3),(10,4),(10,5),(10,6),(10,7),(10,8),(10,9),(15,1),(15,2),
(15,3),(15,4),(15,5),(15,6),(15,7),(15,8),(15,9),(15,10),(15,11),(15,12),(15,13),(15,14),
∴在已知甲取到的數是5的倍數的情況下,甲所取的數大于乙所取的數的概率是p= =
.
故選:D.
科目:高中數學 來源: 題型:
【題目】已知函數 f(x)=x﹣ln x﹣2.
(Ⅰ)求函數 f ( x)的最小值;
(Ⅱ)如果不等式 x ln x+(1﹣k)x+k>0(k∈Z)在區間(1,+∞)上恒成立,求k的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知PA⊥平面ABCD,且四邊形ABCD為矩形,M、N分別是AB、PC的中點.
(1)求證:MN⊥CD;
(2)若∠PDA=45°,求證:MN⊥平面PCD.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知冪函數f(x)=xa的圖象經過點.
(1)求函數f(x)的解析式,并判斷奇偶性;
(2)判斷函數f(x)在(﹣,0)上的單調性,并用單調性定義證明.
(3)作出函數f(x)在定義域內的大致圖象(不必寫出作圖過程).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在△ABC中,a=b·cos C+c·cos B,其中a,b,c分別為角A,B,C的對邊,在四面體PABC中,S1,S2,S3,S分別表示△PAB,△PBC,△PCA,△ABC的面積,α,β,γ依次表示面PAB,面PBC,面PCA與底面ABC所成二面角的大。畬懗鰧λ拿骟w性質的猜想,并證明你的結論
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3﹣3x2﹣9x+1(x∈R).
(1)求函數f(x)的單調區間.
(2)若f(x)﹣2a+1≥0對x∈[﹣2,4]恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在區間(﹣2,a)(a>0)上任取一個數m,若函數f(x)=3x+m﹣3 在區間[1,+∞)無零點的概率不小于
,則實數a能取的最小整數是( )
A.1
B.3
C.5
D.6
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓Γ: =1(a>b>0)的左右焦點分別為F1 , F2 , 焦距為2c,若直線y=
與橢圓Γ的一個交點M滿足∠MF1F2=2∠MF2F1 , 則該橢圓的離心率等于 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com