精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=ex-ln(x+1)
(I)求函數f(x)的單調區間;
(II)證明:數學公式

解:x>-1,f′(x)=ex-
(I)由于f′(x)=ex-在(-1,+∞)上是增函數,且f′(0)=0,
∴當x∈(0,+∞)時,f′(x)>0,當x∈(-1,0)時,f′(x)<0,
故函數f(x)的單調增區間(0,+∞),函數f(x)的單調減區間(-1,0).
(II)由(I)知當x=0時,f(x)取得最小值,即f(x)≥1,
∴ex-ln(x+1)≥1,即ex≥ln(x+1)+1,
取x=,則,
于是e≥ln2-ln1+1,
≥ln3-ln2+1,
≥ln4-ln3+1,

≥ln(n+1)-lnn+1.
相加得,,得證.
分析:(I)先求導數fˊ(x)然后在函數的定義域內解不等式fˊ(x)>0和fˊ(x)<0,fˊ(x)>0的區間為單調增區間,fˊ(x)<0的區間為單調減區間.
(II)由(I)知當x=0時,f(x)取得最小值,即f(x)≥1,即ex-ln(x+1)≥1,即ex≥ln(x+1)+1,取x=,則,再分別令n=1,2,3,…,n得到n個不等式,相加即得.
點評:本題考查函數的單調區間及極值的求法和不等式的證明,具體涉及到導數的性質、函數增減區間的判斷、極值的計算和不等式性質的應用.解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=e-x(cosx+sinx),將滿足f′(x)=0的所有正數x從小到大排成數列{xn}.求證:數列{f(xn)}為等比數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•西城區二模)已知函數f(x)=e|x|+|x|.若關于x的方程f(x)=k有兩個不同的實根,則實數k的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•菏澤一模)已知函數f(x)=e|lnx|-|x-
1
x
|,則函數y=f(x+1)的大致圖象為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的單調區間;
(Ⅱ)求f(x)在[-π,+∞)上的最大值與最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=e-x(x2+x+1).
(Ⅰ)求函數f(x)的單調遞減區間;
(Ⅱ)求函數f(x)在[-1,1]上的最值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视