【題目】已知平行四邊形中,
,
,
,
是線段
的中點,沿
將
翻折到
,使得平面
平面
.
(1)求證:平面
;
(2)求二面角的余弦值.
科目:高中數學 來源: 題型:
【題目】如圖1所示,在等腰梯形ABCD中,,
,垂足為E,
,
將
沿EC折起到
的位置,如圖2所示,使平面
平面ABCE.
(1)連結BE,證明:平面
;
(2)在棱上是否存在點G,使得
平面
,若存在,直接指出點G的位置
不必說明理由
,并求出此時三棱錐
的體積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中曲線
的參數方程為
(
為參數),以
為極點,
軸的正半軸為極軸,建立極坐標系,直線
的極坐標方程為
.
(1)求曲線的普通方程以及直線
的直角坐標方程;
(2)將曲線向左平移2個單位,再將曲線
上的所有點的橫坐標縮短為原來的
,得到曲線
,求曲線
上的點到直線
的距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題10分)選修4—4:坐標系與參數方程
已知曲線C1的參數方程為(t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sinθ。
(Ⅰ)把C1的參數方程化為極坐標方程;
(Ⅱ)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣1|+|2x﹣6|(x∈R),記f(x)的最小值為c.
(1)求c的值;
(2)若實數ab滿足a>0,b>0,a+b=c,求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設各項均為正數的數列{an}的前n項和為Sn,已知a1=1,且anSn+1﹣an+1Sn=an+1﹣λan,對一切n∈N*都成立.
(1)當λ=1時;
①求數列{an}的通項公式;
②若bn=(n+1)an,求數列{bn}的前n項的和Tn;
(2)是否存在實數λ,使數列{an}是等差數列如果存在,求出λ的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com