【題目】三棱錐D﹣ABC及其正視圖和側視圖如右圖所示,且頂點A,B,C,D均在球O的表面上,則球O的表面積為( )
A.32π
B.36π
C.128π
D.144π
科目:高中數學 來源: 題型:
【題目】已知:等比數列{}中,公比為q,且a1=2,a4=54,等差數列{
}中,公差為d,b1=2,b1+b2+b3+b4=a1+ a2+ a3.
(I)求數列{}的通項公式;
(II)求數列{}的前n項和
的公式;
(III)設,
,其中n=1,2,…,試比較
與
的大小,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和為Sn , 且滿足Sn=2﹣an , n=1,2,3,….
(1)求數列{an}的通項公式;
(2)若數列{bn}滿足b1=1,且bn+1=bn+an , 求數列{bn}的通項公式;
(3)設cn= ,數列{cn}的前n項和為Tn=
.求n.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,有一塊矩形空地ABCD,AB=2km,BC=4km,根據周邊環境及地形實際,當地政府規劃在該空地內建一個箏形商業區AEFG,箏形的頂點A,E,F,G為商業區的四個入口,其中入口F在邊BC上(不包含頂點),入口E,G分別在邊AB,AD上,且滿足點A,F恰好關于直線EG對稱,矩形內箏形外的區域均為綠化區.
(1)請確定入口F的選址范圍;
(2)設商業區的面積為S1 , 綠化區的面積為S2 , 商業區的環境舒適度指數為 ,則入口F如何選址可使得該商業區的環境舒適度指數最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數,當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數.
(1)當0≤x≤200時,求函數v(x)的表達式;
(2)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時)f(x)=xv(x)可以達到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓
的左右頂點為
,右焦點為
,一條準線方程是
,點
為橢圓
上異于
的兩點,點
為
的中點.
(1)求橢圓的標準方程;
(2)直線交直線
于點
,記直線
的斜率為
,直線
的斜率為
,求證:
為定值;
(3)若,求直線
斜率的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列命題:
存在每個面都是直角三角形的四面體;
若三棱錐的三條側棱兩兩垂直,則其三個側面也兩兩垂直;
棱臺的側棱延長后交于一點;
用一個平面去截棱錐,棱錐底面和截面之間的部分是棱臺;
其中正確命題的個數是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(0,-2),橢圓E: (a>b>0)的離心率為
,F是橢圓E的右焦點,直線AF的斜率為
,O為坐標原點.
(1)求E的方程;
(2)設過點A的動直線l與E相交于P,Q兩點.當△OPQ的面積最大時,求l的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com