精英家教網 > 高中數學 > 題目詳情

【題目】從甲地到乙地要經過3個十字路口,設各路口信號燈工作相互獨立,且在各路口遇到紅燈的概率分別為.

(Ⅰ)設表示一輛車從甲地到乙地遇到紅燈的個數,求隨機變量的分布列和數學期望;

(Ⅱ)若有2輛車獨立地從甲地到乙地,求這2輛車共遇到1個紅燈的概率.

【答案】(Ⅰ)見解析;(Ⅱ).

【解析】試題分析: 表示一輛車從甲地到乙地遇到紅燈的個數, 的所有可能取值為0,1,2,3.分別求出相應的概率值,列出隨機變量的分布列并計算數學期望, 表示第一輛車遇到紅燈的個數, 表示第二輛車遇到紅燈的個數,這2輛車共遇到1個紅燈就是包括第一輛遇到1次紅燈且第2輛沒遇上和第一輛沒遇上紅燈且第2輛遇上1次紅燈兩個事件的概率的和.

試題解析:(Ⅰ)解:隨機變量的所有可能取值為0,1,2,3.

,

,

.

所以,隨機變量的分布列為

0

1

2

3

隨機變量的數學期望.

(Ⅱ)解:設表示第一輛車遇到紅燈的個數, 表示第二輛車遇到紅燈的個數,則所求事件的概率為

.

所以,這2輛車共遇到1個紅燈的概率為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】 【2017四川宜賓二診】選修4-4:坐標系與參數方程

在直角坐標系中,已知點,曲線的參數方程為.以原點為極點, 軸正半軸為極軸建立極坐標系,直線的極坐標方程為

(Ⅰ)判斷點與直線的位置關系并說明理由;

(Ⅱ)設直線與曲線的兩個交點分別為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,側棱垂直底面,∠ACB=90°,AC=BC= AA1 , D是棱AA1的中點.
(Ⅰ)證明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數, 為自然對數的底數)在點處的切線經過點

(Ⅰ)討論函數的單調性;

(Ⅱ)若,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC, .點D,EN分別為棱PA,PCBC的中點,M是線段AD的中點,PA=AC=4,AB=2.

(Ⅰ)求證:MN∥平面BDE;

(Ⅱ)求二面角C-EM-N的正弦值;

(Ⅲ)已知點H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足:a1=1,an+1= an+ (n∈N*).
(1)求最小的正實數M,使得對任意的n∈N* , 恒有0<an≤M.
(2)求證:對任意的n∈N* , 恒有 ≤an

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐S﹣ABCD的底面是正方形,每條側棱的長都是底面邊長的 倍,P為側棱SD上的點.
(1)求證:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P﹣AC﹣D的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解高三年級學生寒假期間的學習情況,某學校抽取了甲、乙兩班作為對象,調查這兩個班的學生在寒假期間平均每天學習的時間(單位:小時),統計結果繪成頻率分布直方圖(如圖).已知甲、乙兩班學生人數相同,甲班學生平均每天學習時間在區間的有8人.

(I)求直方圖中的值及甲班學生平均每天學習時間在區間的人數;

(II)從甲、乙兩個班平均每天學習時間大于10個小時的學生中任取4人參加測試,設4人中甲班學生的人數為,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某職稱晉級評定機構對參加某次專業技術考試的100人的成績進行了統計,繪制了頻率分布直方圖(如圖所示),規定80分及以上者晉級成功,否則晉級失。M分為100分).

晉級成功

晉級失敗

合計

16

50

合計

(Ⅰ)求圖中的值;

(Ⅱ)根據已知條件完成下面列聯表,并判斷能否有85%的把握認為“晉級成功”與性別有關?

(Ⅲ)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數為,求的分布列與數學期望

(參考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视