【題目】已知Sn表示數列{an}的前n項和,若對任意的n∈N*滿足an+1=an+a2 , 且a3=2,則S2016=( )
A.1006×2013
B.1006×2014
C.1008×2015
D.1007×2015
科目:高中數學 來源: 題型:
【題目】甲、乙兩校各有3名教師報名支教,期中甲校2男1女,乙校1男2女.
(1)若從甲校和乙校報名的教師中各任選1名,寫出所有可能的結果,并求選出的2名教師性別相同的概率;
(2)若從報名的6名教師中任選2名,寫出所有可能的結果,并求選出的2名教師來自同一學校的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 的反函數為
,等比數列{an}的公比為2,若
,則
=( )
A.21004×2016
B.21005×2015
C.21005×2016
D.21008×2015
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在圓上任取一點
,過點
向
軸作垂線段
,垂足為
,當點
在圓上運動時,線段
的中點
的軌跡為
.
(1)求曲線的方程;
(2)過點(0,-2)作直線
與
交于
兩點,(O為原點),求三角形
面積的最大值,并求此時的直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)=(1﹣m)lnx++nx(m,n是常數).
(1)若m=0,且f(x)在(1,2)上單調遞減,求n的取值范圍;
(2)若m>0,且n=﹣1,求f(x)的單調區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知 為等差數列,公差
(
),且
(
)
(1)求證:當 取不同自然數時,此方程有公共根;
(2)若方程不同的根依次為 ,
,
, …,
, …,求證:數列
為等差數列。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一列火車從重慶駛往北京,沿途有n個車站(包括起點站重慶和終點站北京).車上有一郵政車廂,每停靠一站便要卸下火車已經過的各站發往該站的郵袋各1個,同時又要裝上該站發往以后各站的郵袋各1個,設從第k站出發時,郵政車廂內共有郵袋ak個(k=1,2,…,n).
(1)求數列{ak}的通項公式;
(2)當k為何值時,ak的值最大,求出ak的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若直線ax﹣by+2=0(a>0,b>0)和函數f(x)=ax+1+1(a>0且a≠1)的圖象恒過同一個定點,則當 +
取最小值時,函數f(x)的解析式是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據統計,僅在北京地區每天就有500萬單快遞等待派送,近5萬多名快遞員奔跑在一線,快遞網點人員流動性也較強,各快遞公司需要經常招聘快遞員,保證業務的正常開展.下面是50天內甲、乙兩家快遞公司的快遞員的每天送貨單數統計表:
送貨單數 | 30 | 40 | 50 | 60 | |
天數 | 甲 | 10 | 10 | 20 | 10 |
乙 | 5 | 15 | 25 | 5 |
已知這兩家快遞公司的快遞員的日工資方案分別為:甲公司規定底薪元,每單抽成
元;乙公司規定底薪
元,每日前
單無抽成,超過
單的部分每單抽成
元.
(1)分別求甲、乙快遞公司的快遞員的日工資(單位:元)與送貨單數
的函數關系式;
(2)若將頻率視為概率,回答下列問題:
①記甲快遞公司的快遞員的日工資為(單位:元),求
的分布列和數學期望;
②小趙擬到甲、乙兩家快遞公司中的一家應聘快遞員的工作,如果僅從日收入的角度考慮,請你利用所學的統計學知識為他作出選擇,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com