精英家教網 > 高中數學 > 題目詳情

已知,則求=________

練習冊系列答案
相關習題

科目:高中數學 來源:成功之路·突破重點線·數學(學生用書) 題型:022

(1)已知f(2x-1)=ex,則f(x)=________.

(2)f(cosx-1)=sin2x,求f(x)=________.

(3)f()=,則f(x)=________.

查看答案和解析>>

科目:高中數學 來源:導學大課堂必修四數學蘇教版 蘇教版 題型:044

(1)在已知圓內,∠AOB=1弧度,它所對的弦長為2,則∠AOB所對弧長為多少?

(2)扇形OAB的面積是1 cm2,它的周長是4 cm,求它的圓心角和弦AB的長.

查看答案和解析>>

科目:高中數學 來源:2013屆黑龍江虎林高中高二下學期期中理科數學試卷(解析版) 題型:解答題

已知函數f(x)=alnx-x2+1.

(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數a和b的值;

(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二問中,利用當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數,

不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1

即f(x1)+x1≥f(x2)+x2,結合構造函數和導數的知識來解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數,

不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數,

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0時恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范圍是

 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線ly=2x-2,圓Cx2y2+2x+4y+1=0,請判斷直線l與圓C的位置關系,若相交,則求直線l被圓C所截的線段長.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视