精英家教網 > 高中數學 > 題目詳情
如圖,已知PA⊥面ABCD,PA=AB=AD=CD,∠BAD=∠ADC=90°
(1)在面PCD上找一點M,使BM⊥面PCD;
(2)求由面PBC與面PAD所成角的二面角的余弦值.

【答案】分析:(1)設M為PC的中點,PD中點為N,由條件可得ABMN為平行四邊形,BM∥AN.再根據AN⊥面PCD,可得BM⊥面PCD.
(2)延長CB交DA于E,證明PE⊥面PCD,可得∠CPD為二面角C-PE-D的平面角.求得得tan∠CPD=,可得cos∠CPD的值.
解答:解:(1)M為PC的中點,設PD中點為N,則MN=CD,且MN∥CD,∴MN=AB,MN∥AB.
再由 PA=AB=AD=CD,可得ABMN為平行四邊形,∴BM∥AN.
可得∠PAD=90°,∴AN⊥PD,又CD⊥AN,∴AN⊥面PCD,∴BM⊥面PCD.…(6分)
(2)延長CB交DA于E,∵AB=CD,且AB∥CD,∴AE=AD=PA,∴PD⊥PE.
又∴PE⊥CD,∴PE⊥面PCD,∴∠CPD為二面角C-PE-D的平面角.
再由PD=AD,CD=2AD,可得tan∠CPD=,
∴cos∠CPD=.…(12分)
點評:本題主要考查直線和平面平行的判定定理的應用,求二面角的平面角的方法,體現了轉化的數學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,已知平面α∩β=?,A,B∈α,C,D∈?,ABCD為矩形,P∈B,PA⊥α,且PA=AD,M、N、F依次是AB、PC、PD的中點.
(1)求證:四邊形AMNF為平行四邊形;
(2)求證:MN⊥AB
(3)求異面直線PA與MN所成角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•韶關一模)如圖,已知PA⊥⊙O所在的平面,AB是⊙O的直徑,AB=4,C是⊙O上一點,且PA=AC=BC,
PE
PC
=
PF
PB

(1)求證:EF∥面ABC;
(2)求證:EF⊥AE;
(3)當λ=
1
2
時,求三棱錐A-CEF的體積.

查看答案和解析>>

科目:高中數學 來源:南充高中2008-2009學年高二下學期第四次月考數學試題(理) 題型:044

如圖,已知PA垂直于⊙O所在平面,AB是⊙O的直徑,點C為圓周上異于A、B的一點.

(1)若一個n面體中有m個面是直角三角形,則稱這個n面體的直度為.那么四面體P-ABC的直度為多少?說明理由;

(2)在四面體P-ABC中,AP=AB=1,設.若動點M在四面體P-ABC表面上運動,并且總保持PB⊥AM.設為動點M的軌跡圍成的封閉圖形的面積關于角的函數,求取最大值時,二面角A-PB-C的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知平面α∩β=?,A,B∈α,C,D∈?,ABCD為矩形,P∈B,PA⊥α,且PA=AD,M、N、F依次是AB、PC、PD的中點.
(1)求證:四邊形AMNF為平行四邊形;
(2)求證:MN⊥AB
(3)求異面直線PA與MN所成角的大。

查看答案和解析>>

科目:高中數學 來源:2004-2005學年重慶一中高二(上)期末數學試卷(文科)(解析版) 題型:解答題

如圖,已知平面α∩β=?,A,B∈α,C,D∈?,ABCD為矩形,P∈B,PA⊥α,且PA=AD,M、N、F依次是AB、PC、PD的中點.
(1)求證:四邊形AMNF為平行四邊形;
(2)求證:MN⊥AB
(3)求異面直線PA與MN所成角的大。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视