精英家教網 > 高中數學 > 題目詳情

【題目】已知函數.

討論極值點的個數;

有兩個極值點,證明:的極大值大于.

【答案】時,無極值點;當時,有兩個極值點;當時,只有一個極值點;證明見解析.

【解析】

求導得,再分類討論,三種情況,即可得出結果;

知,當時,有兩個極值點,,,所以,則內為增函數,在內為減函數,在內為增函數,所以的極大值點為.,得,所以,構造新函數,利用導數研究單調性,進而求證的極大值大于.

解:的定義域為,.

時,,故無極值點;

時,,設是方程的兩根,則,

則當時,,所以只有一個極值點;

時,有兩個極值點.

綜上,當時,無極值點;當時,有兩個極值點;當時,只有一個極值點.

證明:由知,當時,有兩個極值點,,,所以,

內為增函數,在內為減函數,在內為增函數,所以的極大值點為.

,得,所以.

,其中,則,

時,,上單調遞減,所以當時,,所以的極大值大于.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數fx)=|x+1||2x2|的最大值為M,正實數a,b滿足a+bM

1)求2a2+b2的最小值;

2)求證:aabbab

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)若函數處的切線方程,求實數a,b的值;

2)若函數兩處得極值,求實數a的取值范圍;

3)在(2)的條件下,若.求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某外賣平臺為提高外賣配送效率,針對外賣配送業務提出了兩種新的配送方案,為比較兩種配送方案的效率,共選取50名外賣騎手,并將他們隨機分成兩組,每組25人,第一組騎手用甲配送方案,第二組騎手用乙配送方案.根據騎手在相同時間內完成配送訂單的數量(單位:單)繪制了如下莖葉圖:

1)根據莖葉圖,求各組內25位騎手完成訂單數的中位數,已知用甲配送方案的25位騎手完成訂單數的平均數為52,結合中位數與平均數判斷哪種配送方案的效率更高,并說明理由;

2)設所有50名騎手在相同時間內完成訂單數的平均數,將完成訂單數超過記為“優秀”,不超過記為“一般”,然后將騎手的對應人數填入下面列聯表;

優秀

一般

甲配送方案

乙配送方案

3)根據(2)中的列聯表,判斷能否有的把握認為兩種配送方案的效率有差異.

附:,其中.

0.05

0.010

0.005

3.841

6.635

7.879

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數方程為t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為

1)求直線的普通方程以及曲線C的參數方程;

2)過曲線C上任意一點M作與直線的夾角為的直線,交于點N,求的最小值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在三棱錐中,,,平面平面,點在棱.

的中點,證明:.

與平面所成角的正弦值為,求.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)sin(ωx+φ)cos(ωx+φ)(0<φ<π,ω>0)為偶函數,且y=f(x)圖象的兩相鄰對稱軸間的距離為,則f()的值為( )

A.1B.1C..D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】FEV1(一秒用力呼氣容積)是肺功能的一個重要指標.為了研究某地區1015歲男孩群體的FEV1與身高的關系,現從該地區A、B、C三個社區1015歲男孩中隨機抽取600名進行FEV1與身高數據的相關分析.

1)若A、BC三個社區1015歲男孩人數比例為132,按分層抽樣進行抽取,請求出三個社區應抽取的男孩人數.

2)經過數據處理后,得到該地區1015歲男孩身高(cm)FEV1(L)對應的10組數據,并作出如下散點圖:

經計算得:,,,的相關系數.

①請你利用所給公式與數據建立關于的線性回歸方程,并估計身高160cm的男孩的FEV1的預報值.

②已知若①中回歸模型誤差的標準差為,則該地區身高160cm的男孩的FEV1的實際值落在,內的概率為.現已求得,若該地區有兩個身高160cm12歲男孩MN,分別測得FEV1值為2.8L2.3L,請結合概率統計知識對兩個男孩的FEV1指標作出一個合理的推斷與建議.

附:樣本的相關系數,其回歸方程的斜率和截距的最小二乘法估計分別為,,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】是公差不為零的等差數列,滿足,設正項數列的前項和為,且

1)求數列的通項公式;

2)在之間插入1個數,使、成等差數列;在之間插入2個數,使、、成等差數列;;在之間插入個數、、,使、、、成等差數列.

;

對于①中的,是否存在正整數、,使得成立?若存在,求出所有的正整數對;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视