精英家教網 > 高中數學 > 題目詳情

(本題9分)有一枚正方體骰子,六個面分別寫1、2、3、4、5、6的數字,規定“拋擲該枚骰子得到的數字是拋擲后,面向上的那一個數字”。已知b和c是先后拋擲該枚骰子得到的數字,函數=。

(1) 若先拋擲骰子得到的數字是3,求再次拋擲骰子時,使函數有零點的概率;

(2) 求函數在區間(—3,+∞)是增函數的概率

(本題9分)

解:(1)記“函數=有零點”為事件A

由題意知:,基本事件總數為:(3,1)、(3,2)、

(3,3)、(3,4)、(3,5)、(3,6)共6個

∵函數=有零點, ∴方程有實數根

 ∴             ∴

即事件“函數=有零點”包含2個基本事件

故函數=有零點的概率P(A)=    

(2)由題意可知:數對表示的基本事件:(1,1)、(1,2)、(1,3)、(1,4)、(1,5)、(1,6)、(2,1)……(6,5)、(6,6),所以基本事件總數為36。

記“函數在區間(—3,+∞)是增函數”為事件B。由拋物線的開口向上,使函數在區間(—3,+∞)是增函數,只需   ∴   ∴

所以事件B包含的基本事件個數為1×6=6個    

∴函數在區間(—3,+∞)是增函數的概率P(B)= 

練習冊系列答案
相關習題

科目:高中數學 來源:天津市新人教A版數學2012屆高三單元測試41:概率 題型:044

有一枚正方體骰子,六個面分別寫1、2、3、4、5、6的數字,規定“拋擲該枚骰子得到的數字是拋擲后,面向上的那一個數字”.已知b和c是先后拋擲該枚骰子得到的數字,函數f(x)=x2+bx+c(x∈R).

(1)若先拋擲骰子得到的數字是3,求再次拋擲骰子時,使函數y=f(x)有零點的概率;

(2)求函數y=f(x)在區間(-3,+∞)是增函數的概率

查看答案和解析>>

科目:高中數學 來源:2014屆黑龍江省高二下學期期中考試理科數學試卷(解析版) 題型:解答題

有一枚正方體骰子,六個面分別寫1、2、3、4、5、6的數字,規定“拋擲該枚骰子得到的數字是拋擲后,面向上的那一個數字”.已知是先后拋擲該枚骰子得到的數字,函數 

(1)若先拋擲骰子得到的數字是3,求再次拋擲骰子時,使函數有零點的概率;

(2)求函數在區間(-3,+∞)上是增函數的概率.

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年遼寧省高三第一次模擬考試數學理卷 題型:解答題

(本題12分)

有一種舞臺燈,外形是正六棱柱,在其每一個側面 (編號為①②③④⑤⑥)上安裝5只顏色各異的燈,假若每只燈正常發光的概率為0.5,若一個側面上至少有3只燈發光,則不需要更換這個面,否則需要更換這個面,假定更換一個面需要100元,用表示更換的面數,用表示更換費用。

(1)求①號面需要更換的概率;

(2)求6個面中恰好有2個面需要更換的概率;

(3)寫出的分布列,求的數學期望。

 

查看答案和解析>>

科目:高中數學 來源:2013屆云南省高二上學期期末考試理科數學 題型:解答題

(本題滿分12分)有一枚正方體骰子,六個面分別寫1、2、3、4、5、6的數字,規定“拋擲該枚骰子得到的數字是拋擲后,面向上的那一個數字”。已知b和c是先后拋擲該枚骰子得到的數字,函數=。

(Ⅰ)若先拋擲骰子得到的數字是3,求再次拋擲骰子時,使函數有零點的概率;

(Ⅱ) 求函數在區間(—3,+∞)是增函數的概率

 

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视