【題目】設點的坐標分別為
,直線
相交于點
,且它們的斜率之積
.
(1)求點的軌跡方程;
(2)在點的軌跡上有一點
且點
在
軸的上方,
,求
的范圍.
【答案】(1);(2)
.
【解析】試題分析:(1)設點的坐標為
,表示出兩直線的斜率,利用斜率之積等于
建立方程,化簡即可求出軌跡方程;(2)點
的坐標為
,利用斜率公式及夾角公式,可得
的關系,再結合點在橢圓上消元后根據橢圓的范圍建立不等關系,即可解出
的范圍.
試題解析:設點的坐標為
因為點坐標為
,所以直線
的斜率
同理,直線的斜率
由已知有
化簡,得點的軌跡方程為
方法一:設點的坐標為
,過點
作
垂直于
軸,垂足為
,
因為點的坐標為
在點
的軌跡上,所以
得
,
因為,
,
.
所以解得.
方法二:設點的坐標為
,點
的坐標分別為
直線的斜率
,直線
的斜率
由得
所以(1)
又由于點的坐標為為
在點
的軌跡上,所以
得,代入(1)得
.
因為,
,
.
所以解得.
方法三設點的坐標為
,點
的坐標分別為
直線的斜率
,直線
的斜率
由得
所以(1)
又由于點的坐標為為
在點
的軌跡上,所以
代入(1)得,
,
,
,
.
所以解得.
方法四:設點的坐標為
,點
的坐標分別為
直線的斜率
,直線
的斜率
由得
所以(1)
將代入(1)得
,
,
.
因為,
,
.
所以解得.
方法五設點的坐標為
,點
的坐標分別為
直線的斜率
,直線
的斜率
由得
.
所以解得.
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ax﹣a﹣x(a>0且a≠1)
(1)若f(1)<0,求a的取值范圍;
(2)若f(1)= ,g(x)=a2x+a﹣2x﹣2mf(x)且g(x)在[1,+∞)上的最小值為﹣2,求m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】F1 , F2分別是雙曲線x2﹣ =1(b>0)的左、右焦點,過F2的直線l與雙曲線的左右兩支分別交于A,B兩點,若△ABF1是等邊三角形,則該雙曲線的虛軸長為( )
A.2
B.2
C.
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修 4-4]參數方程與極坐標系
在平面直角坐標系中,已知曲線
:
,以平面直角坐標系
的原點
為極點,
軸正半軸為極軸,取相同的單位長度建立極坐標系.已知直線
:
.
(Ⅰ)試寫出直線的直角坐標方程和曲線
的參數方程;
(Ⅱ)在曲線上求一點
,使點
到直線
的距離最大,并求出此最大值.
[選修 4-5]不等式選講
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°.BC=CC1=a,AC=2a.
(1)求證:AB1⊥BC1;
(2)求二面角B﹣AB1﹣C的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax(a>0且a≠1)的圖象經過點(2, ).
(1)比較f(2)與f(b2+2)的大。
(2)求函數g(x)=a (x≥0)的值域.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com