精英家教網 > 高中數學 > 題目詳情
如圖,橢圓+=1(a>b>0)上的點到左焦點為F的最大距離是,已知點M(1,e)在橢圓上,其中e為橢圓的離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)過原點且斜率為K的直線交橢圓于P、Q兩點,其中P在第一象限,它在x軸上的射影為點N,直線QN交橢圓于另一點H.證明:對任意的K>0,點P恒在以線段QH為直徑的圓內.

【答案】分析:(Ⅰ)根據橢圓上的點到左焦點為F的最大距離是,M(1,e)在橢圓上,建立方程組,即可求橢圓的方程;
(Ⅱ)設出直線QN的方程,代入橢圓方程,利用韋達定理,結合向量的數量積,即可得到結論.
解答:(Ⅰ)解:由題意,,解得a2=4,b2=1
∴橢圓的方程為
(Ⅱ)證明:令P(x1,kx1),H(xH,yH),則Q(-x1,-kx1),N(x1,0)
∴kPN=,∴直線QN的方程為y=(x-x1),
代入,整理得(1+k2)x2-2k2x1x+=0
∴(-x1)+xH=,∴xH=+x1,
=(-2x1,-2kx1),=(,
=
∵k>0,x1>0,∴<0
∴對任意的k>0,點P恒在以線段QH為直徑的圓內.
點評:本題考查橢圓的標準方程,考查直線與橢圓的位置關系,考查向量知識的運用,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源:2012-2013學年遼寧省鐵嶺市開原市高二(上)期末數學試卷(理科)(解析版) 題型:解答題

如圖,橢圓=1(a>b>0)與過A(2,0),B(0,1)的直線有且只有一個公共點T,且橢圓的離心率e=
(1)求橢圓方程;
(2)設F1、F2分別為橢圓的左、右焦點,M為線段AF2的中點,求tan∠ATM.

查看答案和解析>>

科目:高中數學 來源:2009-2010學年陜西省延安市實驗中學高二(下)期中數學試卷(理科)(解析版) 題型:解答題

如圖,橢圓=1(a>b>0)與過點A(2,0)B(0,1)的直線有且只有一個公共點T,且橢圓的離心率e=
(Ⅰ)求橢圓方程;
(Ⅱ)設F1、F2分別為橢圓的左、右焦點,M為線段AF1的中點,求證:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中數學 來源:2011年四川省南充市高考數學零診試卷(文科)(解析版) 題型:解答題

如圖,橢圓=1(a>b>0)與過點A(2,0)B(0,1)的直線有且只有一個公共點T,且橢圓的離心率e=
(Ⅰ)求橢圓方程;
(Ⅱ)設F1、F2分別為橢圓的左、右焦點,M為線段AF1的中點,求證:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中數學 來源:2006年浙江省高考數學試卷(理科)(解析版) 題型:解答題

如圖,橢圓=1(a>b>0)與過點A(2,0)B(0,1)的直線有且只有一個公共點T,且橢圓的離心率e=
(Ⅰ)求橢圓方程;
(Ⅱ)設F1、F2分別為橢圓的左、右焦點,M為線段AF1的中點,求證:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中數學 來源:2011年天津市濱海新區高考數學模擬試卷(文科)(解析版) 題型:解答題

如圖,橢圓=1(a>b>0)與一等軸雙曲線相交,M是其中一個交點,并且雙曲線的頂點是該橢圓的焦點F1,F2,雙曲線的焦點是橢圓的頂點A1,A2,△MF1F2的周長為4(+1).設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設直線PF1、PF2的斜率分別為k1、k2,證明k1•k2=1;
(Ⅲ)是否存在常數λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视