【題目】莊子說:“一尺之錘,日取其半,萬世不竭”,這句話描述的是一個數列問題,現用程序框圖描述,如圖所示,若輸入某個正整數n后,輸出的S∈(,
),則輸入的n的值為( 。
A.7B.6C.5D.4
【答案】C
【解析】
模擬程序的運行,依次寫出前幾次循環得到的S,k的值,由題意,說明當算出的值S∈(,
)后進行判斷時判斷框中的條件滿足,即可求出此時的n值.
框圖首先給累加變量S賦值0,給循環變量k賦值1,
輸入n的值后,執行循環體,S,k=1+1=2;
判斷2>n不成立,執行循環體,S,k=2+1=3;
判斷3>n不成立,執行循環體,S,k=3+1=4;
判斷4>n不成立,執行循環體,S,k=4+1=5.
判斷5>n不成立,執行循環體,S,k=4+1=6.
判斷6>n不成立,執行循環體,S,k=4+1=7.
…
由于輸出的S∈(,
),可得:當S
,k=6時,應該滿足條件6>n,
即:5≤n<6,
可得輸入的正整數n的值為5.
故選:C.
科目:高中數學 來源: 題型:
【題目】如圖,在正三棱柱(側棱垂直于底面,且底面三角形
是等邊三角形)中,
,
分別是
的中點.
(1)求證:平面∥平面
;
(2)在線段上是否存在一點
使
平面
?若存在,確定點
的位置;若不存在,也請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的離心率是
,過點
做斜率為
的直線
,橢圓
與直線
交于
兩點,當直線
垂直于
軸時
.
(Ⅰ)求橢圓的方程;
(Ⅱ)當變化時,在
軸上是否存在點
,使得
是以
為底的等腰三角形,若存在求出
的取值范圍,若不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:從數列{an}中抽取m(m∈N,m≥3)項按其在{an}中的次序排列形成一個新數列{bn},則稱{bn}為{an}的子數列;若{bn}成等差(或等比),則稱{bn}為{an}的等差(或等比)子數列.
(1)記數列{an}的前n項和為Sn,已知.
①求數列{an}的通項公式;
②數列{an}是否存在等差子數列,若存在,求出等差子數列;若不存在,請說明理由.
(2)已知數列{an}的通項公式為an=n+a(a∈Q+),證明:{an}存在等比子數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2016年春節期間全國流行在微信群里發、搶紅包,現假設某人將688元發成手氣紅包50個,產生的手氣紅包頻數分布表如表:
(I)求產生的手氣紅包的金額不小于9元的頻率;
(Ⅱ)估計手氣紅包金額的平均數(同一組中的數據用該組區間的中點值作代表);
(Ⅲ)在這50個紅包組成的樣本中,將頻率視為概率.
(i)若紅包金額在區間[21,25]內為最佳運氣手,求搶得紅包的某人恰好是最佳運氣手的概率;
(ii)隨機抽取手氣紅包金額在[1,5)∪[﹣21,25]內的兩名幸運者,設其手氣金額分別為m,n,求事件“|m﹣n|>16”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若存在極值,求實數a的取值范圍;
(2)設,設
是定義在
上的函數.
(ⅰ)證明:在
上為單調遞增函數(
是
的導函數);
(ⅱ)討論的零點個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖為某街區道路示意圖,圖中的實線為道路,每段道路旁的數字表示單向通過此段道路時會遇見的行人人數,在防控新冠肺炎疫情期間,某人需要從A點由圖中的道路到B點,為避免人員聚集,此人選擇了一條遇見的行人總人數最小的從A到B的行走線路,則此人從A到B遇見的行人總人數最小值是_________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年寒假是特殊的寒假,因為疫情全體學生只能在家進行網上在線學習,為了研究學生在網上學習的情況,某學校在網上隨機抽取120名學生對線上教育進行調查,其中男生與女生的人數之比為11∶13,其中男生30人對于線上教育滿意,女生中有15名表示對線上教育不滿意.
(1)完成列聯表,并回答能否有99%的把握認為對“線上教育是否滿意與性別有關”;
滿意 | 不滿意 | 總計 | |
男生 | |||
女生 | |||
合計 | 120 |
(2)從被調查中對線上教育滿意的學生中,利用分層抽樣抽取8名學生,再在8名學生中抽取3名學生,作線上學習的經驗介紹,其中抽取男生的個數為,求出
的分布列及期望值.
參考公式:附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 0.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com