【題目】在中,
的角平分線所在直線為
,
邊的高線所在直線為
,
邊的高線所在直線為
,
(1)求直線的方程;
(2)求直線的方程;
(3)求直線的方程.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,點
,直線
,圓
.
(1)求的取值范圍,并求出圓心坐標;
(2)有一動圓的半徑為
,圓心在
上,若動圓
上存在點
,使
,求圓心
的橫坐標
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,以橢圓的上焦點
為圓心,橢圓的短半軸為半徑的圓與直線
截得的弦長為
.
(1)求橢圓的方程;
(2)過橢圓左頂點做兩條互相垂直的直線,
,且分別交橢圓于
,
兩點(
,
不是橢圓的頂點),探究直線
是否過定點,若過定點則求出定點坐標,否則說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】不重合的兩條直線,
和不重合的兩個平面
,
,下面的幾個命題:①若
,且
,則
;②若
,
與平面
成等角,則
;③若
,
,且
,則
;④若
,
,則
;⑤若
,
異面,且
,
均與平面
和
平行,則
.在這5個命題中,真命題的個數是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為迎接2022年北京冬季奧運會,普及冬奧知識,某校開展了“冰雪答題王”冬奧知識競賽活動.現從參加冬奧知識競賽活動的學生中隨機抽取了100名學生,將他們的比賽成績(滿分為100分)分為6組:,
,
,
,
,
,得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)估計這100名學生的平均成績(同一組中的數據用該組區間的中點值為代表);
(3)在抽取的100名學生中,規定:比賽成績不低于80分為“優秀”,比賽成績低于80分為“非優秀”.請將下面的2×2列聯表補充完整,并判斷是否有99.9%的把握認為“比賽成績是否優秀與性別有關”?
優秀 | 非優秀 | 合計 | |
男生 | 40 | ||
女生 | 50 | ||
合計 | 100 |
參考公式及數據:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐S-ABCD中,底面ABCD,四邊形ABCD是邊長為1的正方形,且
,點M是SD的中點.請用空間向量的知識解答下列問題:
(1)求證:;
(2)求平面SAB與平面SCD夾角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,直三棱柱中,
,
,
為
的中點.
(I)若為
上的一點,且
與直線
垂直,求
的值;
(Ⅱ)在(I)的條件下,設異面直線與
所成的角為45°,求點
到平面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國2019年新年賀歲大片《流浪地球》自上映以來引發了社會的廣泛關注,受到了觀眾的普遍好評.假設男性觀眾認為《流浪地球》好看的概率為,女性觀眾認為《流浪地球》好看的概率為
.某機構就《流浪地球》是否好看的問題隨機采訪了4名觀眾(其中2男2女).
(1)求這4名觀眾中女性認為好看的人數比男性認為好看的人數多的概率;
(2)設表示這4名觀眾中認為《流浪地球》好看的人數,求
的分布列與數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com