精英家教網 > 高中數學 > 題目詳情

【題目】圖一是美麗的勾股樹,它是一個直角三角形分別以它的每一邊向外作正方形而得到.圖二是第1勾股樹,重復圖二的作法,得到圖三為第2勾股樹,以此類推,已知最大的正方形面積為1,則第勾股樹所有正方形的個數與面積的和分別為(

A. B. C. D.

【答案】A

【解析】

第1代“勾股樹”中,小正方形的個數3=21+1﹣1=3,所有正方形的面積之和為2=(1+1)×1,第2代“勾股樹”中,小正方形的個數7=22+1﹣1,所有的正方形的面積之和為3=(2+1)×1,以此類推,第n代“勾股樹”所有正方形的個數為2n+1﹣1,第n代“勾股樹”所有正方形的面積的和為:(n+1)×1=n+1.

解:第1代“勾股樹”中,小正方形的個數3=21+1﹣1=3,

如圖(2),設直角三角形的三條邊長分別為a,b,c,

根據勾股定理得a2+b2c2,

即正方形A的面積+正方形B的面積=正方形C的面積=1,

所有正方形的面積之和為2=(1+1)×1,

第2代“勾股樹”中,小正方形的個數7=22+1﹣1,

如圖(3),正方形E的面積+正方形F的面積=正方形A的面積,

正方形M的面積+正方形N的面積=正方形B的面積,

正方形E的面積+正方形F的面積+正方形M的面積+正方形N的面積=正方形A的面積+正方形B的面積=正方形C的面積=1,

所有的正方形的面積之和為3=(2+1)×1,

以此類推,第n代“勾股樹”所有正方形的個數為2n+1﹣1,

n代“勾股樹”所有正方形的面積的和為:(n+1)×1=n+1.

故選:A

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數,其中,且

(1)當時,函數處的切線與直線平行,試求m的值;

(2)當時,令,若函數有兩個極值點,且,求 的取值范圍;

(3)當時,試討論函數的零點個數,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某籃球隊甲、乙兩名運動員練習罰球,每人練習10組,每組罰球40個.命中個數的莖葉圖如圖,則下面結論中錯誤的一個是(  )

A. 甲的極差是29 B. 甲的中位數是24

C. 甲罰球命中率比乙高 D. 乙的眾數是21

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的離心率為,且橢圓過點.過點做兩條相互垂直的直線、分別與橢圓交于、、、四點.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)若 ,探究:直線是否過定點?若是,請求出定點坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 有兩個不同的零點.

(1)求的取值范圍;

(2)設, 的兩個零點,證明: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,.

(1)討論函數的單調性;

(2)當a=1時,若關于的不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某高中隨機抽取部分高一學生調查其上學路上所需時間頻(單位:分鐘),并將所得數據繪制成頻率分布直方圖(如圖),其中上學路上所需時間的范圍是,樣本數據分組為.

(1)求直方圖中的值;

(2)如果上學路上所需時間不少于1小時的學生可申請在學校住宿,若招生 1200名請估計新生中有多少名學生可以申請住宿;

(3)從學校的高一學生中任選4名學生,這4名學生中上學路上所需時間少于 40分鐘的人數記為,求的分布列和數學期望.(以直方圖中的頻率作為概率).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】天水市第一次聯考后,某校對甲、乙兩個文科班的數學考試成績進行分析,

規定:大于或等于120分為優秀,120分以下為非優秀.統計成績后,

得到如下的列聯表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優秀的概率為.


優秀

非優秀

合計

甲班

10



乙班


30


合計



110

1)請完成上面的列聯表;

2)根據列聯表的數據,若按99.9%的可靠性要求,能否認為成績與班級有關系;

3)若按下面的方法從甲班優秀的學生中抽取一人:把甲班優秀的10名學生從211進行編號,先后兩次拋擲一枚均勻的骰子,出現的點數之和為被抽取人的序號。試求抽到9號或10號的概率。

參考公式與臨界值表:。


0.100

0.050

0.025

0.010

0.001


2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】求滿足下列條件的橢圓或雙曲線的標準方程:

(1)橢圓的焦點在軸上,焦距為4,且經過點;

(2)雙曲線的焦點在軸上,右焦點為,過作重直于軸的直線交雙曲線于,兩點,且,離心率為.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视