精英家教網 > 高中數學 > 題目詳情

已知函數,
(l)求函數的最小正周期;
(2)當時,求函數f(x)的單調區間。

(1);(2)單調遞增區間:;單調遞減區間:

解析試題分析:(1)利用誘導公式及二倍角公式等及將函數
化成,再利用正弦函數的周期求函數的周期;
(2)由(1)的結果知,首先由
再利用正弦函數的單調性求的單調區間.
解:(1)
=
函數的最小正周期
(2)當時,
時,函數單調遞增
時,函數單調遞減
考點:1、三角函數誘導公、二倍角公式、兩角和與差的正弦公式;2、正弦數的性質.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數.
(1)求的值;
(2)當時,求函數的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1) 化簡  并求的振幅、相位、初相;
(2) 當時,求f(x)的最小值以及取得最小值時x的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知正方形ABCD在直線MN的上方,邊BC在直線MN上,E是線段BC上一點,以AE為邊在直線MN的上方作正方形AEFG,其中AE=2,記∠FEN=,△EFC的面積為

(1)求之間的函數關系;
(2)當角取何值時最大?并求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數為偶函數,其圖象上相鄰的兩個最低點間的距離為
(1)求的解析式;
(2)若的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,.
(1)求函數的最小正周期;
(2)若函數有零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設△ABC三個內角A、B、C所對的邊分別為a,b,c. 已知C=,acosA=bcosB.
(1)求角A的大小;
(2)如圖,在△ABC的外角∠ACD內取一點P,使得PC=2.過點P分別作直線CA、CD的垂線PM、PN,垂足分別是M、N.設∠PCA=α,求PM+PN的最大值及此時α的取值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數(其中)的圖象與x軸的相鄰兩個交點之間的距離為,且圖象上一個最高點為
(1)求的解析式;
(2)當,求的值域.  

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知f(x)=sinxcosx(x∈R).
(1)求函數f(x)的最小正周期;
(2)求函數f(x)的最大值,并指出此時x的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视