【題目】在正方體ABCD﹣A1B1C1D1中,點E,F分別為棱BC,CC1的中點,過點A,E,F作平面截正方體的表面所得圖形是( )
A.三角形B.平行四邊形C.等腰梯形D.平面五邊形
科目:高中數學 來源: 題型:
【題目】在棱長為1的正方體中,E,F分別為線段CD和
上的動點,且滿足
,則四邊形
所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點的三個面上的正投影的面積之和( )
A. 有最小值B. 有最大值
C. 為定值3D. 為定值2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左右焦點分別為
,左頂點為
,且
,
是橢圓上一點.
(1)求橢圓的方程;
(2)若直線與橢圓
交于
兩點,直線
別與
軸交于點
,求證:在
軸上存在點
,使得無論非零實數
怎樣變化,以
為直徑的圓都必過點
,并求出點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知三棱錐P-ABC中,PA平面ABC,ABAC,且PA=l,AB=AC=2,點D滿足,
.
(1)當,求二面角P-BD-C的余弦值;
(2)若直線PC與平面PBD所成角的正弦值為,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知.
(1)討論時,
的單調性、極值;
(2)求證:在(1)的條件下,;
(3)是否存在實數a,使的最小值是3,如果存在,求出a的值;若不存在,
請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一次比賽中,某隊的六名隊員均獲得獎牌,共獲得4枚金牌2枚銀牌,在頒獎晚會上,這六名隊員與1名領隊排成一排合影,若兩名銀牌獲得者需站在領隊的同側,則不同的排法共有______種.(用數字作答)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
(其中
為參數),以原點
為極點,以
軸非負半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)求曲線的普通方程與曲線
的直角坐標方程;
(Ⅱ)設點,
分別是曲線
,
上兩動點且
,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有7個球,其中紅色球2個(同色不加區分),白色,黃色,藍色,紫色,灰色球各1個,將它們排成一行,要求最左邊不排白色,2個紅色排一起,黃色和紅色不相鄰,則有________種不同的排法(用數字回答).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com