【題目】已知橢圓:
(
)的左右焦點分別為
,
,離心率為
,點
在橢圓
上,
,
,過
與坐標軸不垂直的直線
與橢圓
交于
,
兩點,
為
,
的中點.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點,且
,求直線
所在的直線方程.
科目:高中數學 來源: 題型:
【題目】已知、
分別是橢圓
的左、右焦點,點
是橢圓
上一點,且
.
(1)求橢圓的方程;
(2)設直線與橢圓
相交于
,
兩點,若
,其中
為坐標原點,判斷
到直線
的距離是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的方程為
,雙曲線
的一條漸近線與
軸所成的夾角為
,且雙曲線的焦距為
.
(1)求橢圓的方程;
(2)設分別為橢圓
的左,右焦點,過
作直線
(與
軸不重合)交橢圓于
,
兩點,線段
的中點為
,記直線
的斜率為
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(數學文卷·2017屆湖北省黃岡市高三上學期期末考試第16題) “中國剩余定理”又稱“孫子定理”.1852年英國來華傳教偉烈亞利將《孫子算經》中“物不知數”問題的解法傳至歐洲.1874年,英國數學家馬西森指出此法符合1801年由高斯得出的關于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”. “中國剩余定理”講的是一個關于整除的問題,現有這樣一個整除問題:將2至2017這2016個數中能被3除余1且被5除余1的數按由小到大的順序排成一列,構成數列,則此數列的項數為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】觀察圖中各正方形圖案,每條邊上有an個圓點,第an個圖案中圓點的個數是an,按此規律推斷出所有圓點總和Sn與n的關系式為( 。
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數y=f(x)在區間[0,1]上的圖象是連續不斷的一條曲線,且恒有0≤f(x)≤1,可以用隨機模擬方法近似計算由曲線y=f(x)及直線x=0,x=1,y=0所圍成部分的面積S.先產生兩組(每組N個)0~1區間上的均勻隨機數x1,x2,…,xN和y1,y2,…,yN,由此得到N個點(xi,yi)(i=1,2,…,N).再數出其中滿足yi≤f(xi)(i=1,2,…,N)的點數N1,那么由隨機模擬方法可得S的近似值為_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com