精英家教網 > 高中數學 > 題目詳情

【題目】已知點.若曲線上存在,兩點,使為正三角形,則稱型曲線.給定下列三條曲線:

;

;

其中型曲線的個數是

A.B.

C.D.

【答案】B

【解析】

對于①,A-1,1)到直線y=-x+3的距離為,若直線上存在兩點B,C,使ABC為正三角形,則|AB|=|AC|=,以A為圓心,以為半徑的圓的方程為(x+12+y-12=6,聯立
解得,或,后者小于0,所以對應的點不在曲線上,所以①不是.
對于②,化為,圖形是第二象限內的四分之一圓弧,此時連接A點與圓弧和兩坐標軸交點構成的三角形頂角最小為135°,所以②不是.
對于③,根據對稱性,若上存在兩點B、C使ABC構成正三角形,則兩點連線的斜率為1,設BC所在直線方程為x-y+m=0,由題意知A到直線距離為直線被所截弦長的倍,列方程解得m=-,所以曲線③是T型線.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】是雙曲線上的兩點,線段的中點為,直線不經過坐標原點

1)若直線和直線的斜率都存在且分別為,求證:;

2)若雙曲線的焦點分別為、,點的坐標為,直線的斜率為,求由四點、、所圍成四邊形的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐SABCD中,SA⊥底面ABCD,底面ABCD是平行四邊形,E是線段SD上一點.

1)若ESD的中點,求證:SB∥平面ACE

2)若SAABAD2,SC2,且DEDS,求二面角SACE的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓E:過點(0,1)且離心率.

()求橢圓E的方程;

()設動直線l與兩定直線l1:xy=0l2:x+y=0分別交于P,Q兩點.若直線l總與橢圓E有且只有一個公共點,試探究:OPQ的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數方程為為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為

(Ⅰ)求直線的普通方程和曲線的直角坐標方程;

(Ⅱ)設為曲線上的點,,垂足為,若的最小值為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,直四棱柱的側棱長為,底面是邊長的矩形,的中點,

1)求證:平面,

2)求異面直線所成的角的大小(結果用反三角函數表示).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為正整數,若兩個項數都不小于的數列,滿足:存在正數,當時,都有,則稱數列是“接近的”.已知無窮等比數列滿足,無窮數列的前項和為,且.

1)求數列通項公式;

2)求證:對任意正整數,數列,是“接近的”;

3)給定正整數,數列,(其中)是“接近的”,求的最小值,并求出此時的(均用表示).(參考數據:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為響應綠色出行,某市在推出共享單車后,又推出新能源分時租賃汽車.其中一款新能源分時租賃汽車,每次租車收費的標準由兩部分組成:根據行駛里程數按1/公里計費;行駛時間不超過分時,按/分計費;超過分時,超出部分按/分計費.已知王先生家離上班地點公里,每天租用該款汽車上、下班各一次.由于堵車、紅綠燈等因素,每次路上開車花費的時間 ()是一個隨機變量.現統計了次路上開車花費時間,在各時間段內的頻數分布情況如下表所示:

時間(分)

頻數

將各時間段發生的頻率視為概率,每次路上開車花費的時間視為用車時間,范圍為分.(1)寫出王先生一次租車費用(元)與用車時間(分)的函數關系式;(2)若王先生一次開車時間不超過分為路段暢通”,表示3次租用新能源分時租賃汽車中路段暢通的次數,求的分布列和期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】關于函數,給出以下四個命題:(1)當時,單調遞減且沒有最值;(2)方程一定有實數解;(3)如果方程為常數)有解,則解得個數一定是偶數;(4是偶函數且有最小值.其中假命題的序號是____________.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视