【題目】如圖1,等腰梯形ABCD中,,
,
,O為BE中點,F為BC中點.將
沿BE折起到
的位置,如圖2.
(1)證明:平面
;
(2)若平面平面BCDE,求點F到平面
的距離.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知,若線段FP的中垂線l與拋物線C:
總是相切.
(1)求拋物線C的方程;
(2)若過點Q(2,1)的直線l′交拋物線C于M,N兩點,過M,N分別作拋物線的切線相交于點A.
分別與y軸交于點B,C.
( i)證明:當變化時,
的外接圓過定點,并求出定點的坐標 ;
( ii)求的外接圓面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知F1、F2分別是雙曲線1(a>0,b>0)的左、右焦點,若雙曲線的右支上存在一點P,使得(
)
0(O為坐標原點),且|PF1|
|PF2|,則雙曲線的離心率的取值范圍是_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】世界互聯網大會是由中國倡導并每年在浙江省嘉興市桐鄉烏鎮舉辦的世界性互聯網盛會,大會旨在搭建中國與世界互聯互通的國際平臺和國際互聯網共享共治的中國平臺,讓各國在爭議中求共識在共識中謀合作在合作中創共贏.2019年10月20日至22日,第六屆世界互聯網大會如期舉行,為了大會順利召開,組委會特招募了1 000名志愿者.某部門為了了解志愿者的基本情況,調查了其中100名志愿者的年齡,得到了他們年齡的中位數為34歲,年齡在歲內的人數為15,并根據調查結果畫出如圖所示的頻率分布直方圖:
(1)求,
的值并估算出志愿者的平均年齡(同一組的數據用該組區間的中點值代表);
(2)這次大會志愿者主要通過現場報名和登錄大會官網報名,即現場和網絡兩種方式報名調查.這100位志愿者的報名方式部分數據如下表所示,完善下面的表格,通過計算說明能
否在犯錯誤的概率不超過0.001的前提下,認為“選擇哪種報名方式與性別有關系”?
男性 | 女性 | 總計 | |
現場報名 | 50 | ||
網絡報名 | 31 | ||
總計 | 50 |
參考公式及數據:,其中
.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,動點P(x,y)的坐標滿足(t為參數),以原點O為極點,x正半軸為極軸建立極坐標系,曲線l的極坐標方程為ρsin(θ+φ)=cosφ(其中φ為常數,且φ
)
(1)求動點P的軌跡C的極坐標方程;
(2)設直線l與軌跡C的交點為A,B,兩點,求證:當φ變化時,∠AOB的大小恒為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】九章算術
給出求羨除體積的“術”是:“并三廣,以深乘之,又以袤乘之,六而一”,其中的“廣”指羨除的三條平行側棱的長,“深”指一條側棱到另兩條側棱所在平面的距離,“袤”指這兩條側棱所在平行線之間的距離,用現代語言描述:在羨除
中,
,
,
,
,兩條平行線
與
間的距離為h,直線
到平面
的距離為
,則該羨除的體積為
已知某羨除的三視圖如圖所示,則該羨除的體積為
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓的離心率為
,其左焦點到橢圓上點的最遠距離為3,點
為橢圓外一點,不過原點O的直線l與C相交于A,B兩點,且線段AB被直線OP平分
(1)求橢圓C的標準方程
(2)求面積最大值時的直線l的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com