【題目】已知函數f(x)=2x-.
(1)判斷函數的奇偶性,并證明;
(2)用單調性的定義證明函數f(x)=2x-在(0,+∞)上單調遞增.
【答案】(1)函數f(x)=2x-是奇函數.
證明如下:易知f(x)的定義域為{x|x≠0},關于原點對稱.
因為f(-x)=2(-x)-=-2x+
=-
=-f(x),所以f(x)是奇函數.
(2)證明:任取x1,x2∈(0,+∞),且x1<x2,
則f(x2)-f(x1)=2x2--
=2(x2-x1)+5
=(x2-x1)
,
因為0<x1<x2,所以x2-x1>0,x1x2>0,
所以f(x2)-f(x1)>0,即f(x2)>f(x1),
所以f(x)=2x-在(0,+∞)上單調遞增.
【解析】
(1)由定義判斷與
的關系,即可判斷函數奇偶性;
(2)由定義證明單調性,假設定義域內的兩自變量的值,作差求
的符號,進而判斷單調性.
(1)函數f(x)=2x-是奇函數.
證明如下:易知f(x)的定義域為{x|x≠0},關于原點對稱.
因為f(-x)=2(-x)-=-2x+
=-
=-f(x),所以f(x)是奇函數.
(2)證明:任取x1,x2∈(0,+∞),且x1<x2,
則f(x2)-f(x1)
=2x2--
=2(x2-x1)+5
=(x2-x1),
因為0<x1<x2,所以x2-x1>0,x1x2>0,
所以f(x2)-f(x1)>0,即f(x2)>f(x1),
所以f(x)=2x-在(0,+∞)上單調遞增.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
(
為參數),在以坐標原點為極點,
軸的正半軸為極軸的極坐標系中,曲線
的極坐標方程為
.
(1)求的極坐標方程與
的直角坐標方程;
(2)設點的極坐標為
,
與
相交于
兩點,求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司生產一種電子儀器的固定成本為20000元,每生產一臺儀器需增加投入100元,已知總收益滿足函數: ,其中
是儀器的月產量.(注:總收益=總成本+利潤)
(1)將利潤表示為月產量
的函數;
(2)當月產量為何值時,公司所獲利潤最大?最大利潤為多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】李冶(1192-1279),真定欒城(今屬河北石家莊市)人,金元時期的數學家、詩人、晚年在封龍山隱居講學,數學著作多部,其中《益古演段》主要研究平面圖形問題:求圓的直徑,正方形的邊長等,其中一問:現有正方形方田一塊,內部有一個圓形水池,其中水池的邊緣與方田四邊之間的面積為畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長分別是(注:
平方步為
畝,圓周率按
近似計算)
A.步、
步B.
步、
步C.
步、
步D.
步、
步
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,定長為3的線段
兩端點
、
分別在
軸,
軸上滑動,
在線段
上,且
.
(1)求點的軌跡
的方程;
(2)設點是軌跡
上一點,從原點
向圓
作兩條切線分別與軌跡
交于點
,
,直線
,
的斜率分別記為
,
.
①求證:;
②求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如下圖,在平面直角坐標系xOy中,點A(0,3),直線l:y=2x-4.設圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x-1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使MA=2MO,求圓心C的橫坐標a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數,則下列結論錯誤的是( )
A. f(x)的一個周期為-2π
B. y=f(x)的圖象關于直線x=對稱
C. f(x+π)的一個零點為x=
D. f(x)在單調遞減
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com