(本題滿分12分)
雙曲線的中心為原點,焦點在
軸上,兩條漸近線分別為
,經過右焦點
垂直于
的直線分別交
于
兩點.已知
成等差數列,且
與
同向.
(Ⅰ)求雙曲線的離心率;
(Ⅱ)設被雙曲線所截得的線段的長為4,求雙曲線的方程.
(Ⅰ)e==
;(Ⅱ)
。
【解析】
試題分析:(Ⅰ)設,
,
由勾股定理可得:
得:,
,
由倍角公式,解得
,則離心率
.
(Ⅱ)過直線方程為
,與雙曲線方程
聯立
將,
代入,
化簡有
將數值代入,有,解得
故所求的雙曲線方程為.
解法二:解:(Ⅰ)設雙曲線方程為(a>0,b>0),右焦點為F(c,0)(c>0),則c2=a2+b2
不妨設l1:bx-ay=0,l2:bx+ay=0
則 ,
因為2+
2=
2,且
=2
-
,
所以2+
2=(2
-
)2,
于是得tan∠AOB=。
又與
同向,故∠AOF=
∠AOB,
所以
解得
tan∠AOF=,或tan∠AOF=-2(舍去)。
因此
所以雙曲線的離心率e==
(Ⅱ)由a=2b知,雙曲線的方程可化為
x2-4y2=4b2 ①
由l1的斜率為,c=
b知,直線AB的方程為
y=-2(x-b) ②
將②代入①并化簡,得
15x2-32bx+84b2=0
設AB與雙曲線的兩交點的坐標分別為(x1,y1),(x2,y2),則
x1+x2=,x1·x2=
③
AB被雙曲線所截得的線段長
l= ④
將③代入④,并化簡得l=,而由已知l=4,故b=3,a=6
所以雙曲線的方程為
考點:本題主要考查雙曲線的幾何性質,直線與雙曲線的位置關系,兩角和的正切公式。
點評:中檔題,涉及直線與圓錐曲線的位置關系問題,往往要利用韋達定理。弦長問題,往往利用弦長公式,通過整體代換,簡化解題過程。
科目:高中數學 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數學 來源:2012-2013學年上海市金山區高三上學期期末考試數學試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2012-2013學年安徽省高三10月月考理科數學試卷(解析版) 題型:解答題
(本題滿分12分)
設函數(
,
為常數),且方程
有兩個實根為
.
(1)求的解析式;
(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年重慶市高三第二次月考文科數學 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角中,四邊形
是邊長為
的正方形,
,
為
上的點,且
⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大。
(Ⅲ)求點到平面
的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com