【題目】已知函數f(x)= x2﹣alnx(a∈R)
(1)若函數f(x)在x=2處的切線方程為y=x+b,求a,b的值;
(2)討論方程f(x)=0解的個數,并說明理由.
【答案】
(1)解:因為: (x>0),又f(x)在x=2處的切線方程為y=x+b
所以 解得:a=2,b=﹣2ln2
(2)解:當a=0時,f(x)在定義域(0,+∞)上恒大于0,此時方程無解;
當a<0時, 在(0,+∞)上恒成立,
所以f(x)在定義域(0,+∞)上為增函數.∵ ,
,所以方程有惟一解.
當a>0時,
因為當 時,f'(x)>0,f(x)在
內為減函數;
當 時,f(x)在
內為增函數.
所以當 時,有極小值即為最小值
當a∈(0,e)時, ,此方程無解;
當a=e時, .此方程有惟一解
.
當a∈(e,+∞)時, ,
因為 且
,所以方程f(x)=0在區間
上有惟一解,
因為當x>1時,(x﹣lnx)'>0,所以x﹣lnx>1,
所以, ,
因為 ,所以
,
所以 方程f(x)=0在區間 上有惟一解.
所以方程f(x)=0在區間(e,+∞)上有惟兩解.
綜上所述:當a∈[0,e)時,方程無解;
當a<0或a=e時,方程有惟一解;
當a>e時方程有兩解.
【解析】(1)求出導函數,利用f(x)在x=2處的切線方程為y=x+b,列出方程組求解a,b.(2)通過a=0,a<0,判斷方程的解.a>0,求出函數的導數判斷函數的單調性,求出極小值,分析出當a∈[0,e)時,方程無解;當a<0或a=e時,方程有惟一解;當a>e時方程有兩解.
科目:高中數學 來源: 題型:
【題目】如圖,正方體ABCD-A1B1C1D1的棱長為a,M為BD1的中點,N在A1C1上,且滿足|A1N|=3|NC1|.
(1)求MN的長;
(2)試判斷△MNC的形狀.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.
(1)請按字母F、G、H標記在正方體相應地頂點處(不需要說明理由);
(2)判斷平面BEG與平面ACH的位置關系.并說明你的結論;
(3)證明:直線DF⊥平面BEG.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】AB是☉O的直徑,點C是☉O上的動點(點C不與A,B重合),過動點C的直線VC垂直于☉O所在的平面,D,E分別是VA,VC的中點,則下列結論中正確的是________(填寫正確結論的序號).
(1)直線DE∥平面ABC.
(2)直線DE⊥平面VBC.
(3)DE⊥VB.
(4)DE⊥AB.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在R上的函數f(x)滿足f(x﹣1)的對稱軸為x=1,f(x+1)= (f(x)≠0),且在區間(1,2)上單調遞減,已知α、β是鈍角三角形中兩銳角,則f(sinα)和f(cosβ)的大小關系是( )
A.f(sinα)>f(cosβ)
B.f(sinα)<f(cosβ)
C.f(sinα)=f(cosβ)
D.以上情況均有可能
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知A(-,0),B(0,-
),其中k≠0且k≠±1,直線l經過點P(1,0)和AB的中點.
(1)求證:A,B關于直線l對稱.
(2)當1<k<時,求直線l在y軸上的截距b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下表提供了某廠節能降耗技術改造后生產甲產品過程中記錄的產量x(噸)與相應的生產能耗y(噸標準煤)的幾組對照數據.
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(參考數值:3×2.5+4×3+5×4+6×4.5=66.5)
(1)請畫出上表數據的散點圖;
(2)請根據上表提供的數據,用最小二乘法求出y關于x的線性回歸方程 =
x+
;
(3)已知該廠技改前100噸甲產品的生產能耗為90噸標準煤.試根據第2題求出的回歸方程,預測生產100噸甲產品的生產能耗比技改前降低多少噸標準煤?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com