【題目】在四棱錐P﹣ABCD中,AD∥BC,AD=AB=DC= BC=1,E是PC的中點,面PAC⊥面ABCD.
(Ⅰ)證明:ED∥面PAB;
(Ⅱ)若PC=2,PA= ,求二面角A﹣PC﹣D的余弦值.
【答案】(Ⅰ)證明:取PB的中點F,連接AF,EF. ∵EF是△PBC的中位線,∴EF∥BC,且EF= .
又AD=BC,且AD= ,∴AD∥EF且AD=EF,
則四邊形ADEF是平行四邊形.
∴DE∥AF,又DE面ABP,AF面ABP,
∴ED∥面PAB;
(Ⅱ)解:法一、取BC的中點M,連接AM,則AD∥MC且AD=MC,
∴四邊形ADCM是平行四邊形,
∴AM=MC=MB,則A在以BC為直徑的圓上.
∴AB⊥AC,可得 .
過D作DG⊥AC于G,
∵平面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,
∴DG⊥平面PAC,則DG⊥PC.
過G作GH⊥PC于H,則PC⊥面GHD,連接DH,則PC⊥DH,
∴∠GHD是二面角A﹣PC﹣D的平面角.
在△ADC中, ,連接AE,
.
在Rt△GDH中, ,
∴ ,
即二面角A﹣PC﹣D的余弦值 .
法二、取BC的中點M,連接AM,則AD∥MC,且AD=MC.
∴四邊形ADCM是平行四邊形,
∴AM=MC=MB,則A在以BC為直徑的圓上,
∴AB⊥AC.
∵面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,∴AB⊥面PAC.
如圖以A為原點, 方向分別為x軸正方向,y軸正方向建立空間直角坐標系.
可得 ,
.
設P(x,0,z),(z>0),依題意有 ,
,
解得 .
則 ,
,
.
設面PDC的一個法向量為 ,
由 ,取x0=1,得
.
為面PAC的一個法向量,且
,
設二面角A﹣PC﹣D的大小為θ,
則有 ,即二面角A﹣PCD的余弦值
.
【解析】(Ⅰ)取PB的中點F,連接AF,EF,由三角形的中位線定理可得四邊形ADEF是平行四邊形.得到DE∥AF,再由線面平行的判定可得ED∥面PAB;(Ⅱ)法一、取BC的中點M,連接AM,由題意證得A在以BC為直徑的圓上,可得AB⊥AC,找出二面角A﹣PC﹣D的平面角.求解三角形可得二面角A﹣PC﹣D的余弦值. 法二、由題意證得AB⊥AC.又面PAC⊥平面ABCD,可得AB⊥面PAC.以A為原點, 方向分別為x軸正方向,y軸正方向建立空間直角坐標系.求出P的坐標,再求出平面PDC的一個法向量,由圖可得
為面PAC的一個法向量,由兩法向量所成角的余弦值可得二面角A﹣PC﹣D的余弦值.
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC= ,點E在AD上,且AE=2ED. (Ⅰ)已知點F在BC上,且CF=2FB,求證:平面PEF⊥平面PAC;
(Ⅱ)當二面角A﹣PB﹣E的余弦值為多少時,直線PC與平面PAB所成的角為45°?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣2ax,a∈R.
(1)若函數y=f(x)存在與直線2x﹣y=0平行的切線,求實數a的取值范圍;
(2)設g(x)=f(x)+ ,若g(x)有極大值點x1 , 求證:
>a.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的前n(n∈N*)項和為Sn , a3=3,且λSn=anan+1 , 在等比數列{bn}中,b1=2λ,b3=a15+1. (Ⅰ)求數列{an}及{bn}的通項公式;
(Ⅱ)設數列{cn}的前n(n∈N*)項和為Tn , 且 ,求Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國古代數學家趙爽設計的弦圖(如圖1)是由四個全等的直角三角形拼成,四個全等的直角三角形也可拼成圖2所示的菱形,已知弦圖中,大正方形的面積為100,小正方形的面積為4,則圖2中菱形的一個銳角的正弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在我國古代著名的數學專著《九章算術》里有一段敘述:今有良馬與駑馬發長安至齊,齊去長安一千一百二十五里,良馬初日行一百零三里,日增一十三里;駑馬初日行九十七里,日減半里;良馬先至齊,復還迎駑馬,二馬相逢.問:幾日相逢?( )
A.8日
B.9日
C.12日
D.16日
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =(cos
﹣1),
=(
sin
,cos2
),函數f(x)=
+1.
(1)若x∈[ ,π],求f(x)的最小值及對應的x的值;
(2)若x∈[0, ],f(x)=
,求sinx的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 與
(其中
)在
上的單調性正好相反,回答下列問題:
(1)對于 ,
,不等式
恒成立,求實數
的取值范圍;
(2)令 ,兩正實數
、
滿足
,求證:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com