【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,曲線
的參數方程為
(
為參數),曲線
的參數方程為
(
為參數),在以
為極點,
軸的正半軸為極軸的極坐標系中,射線
,與
,
各有一個交點,當
時,這兩個交點間的距離為2,當
,這兩個交點重合.
(1)分別說明,
是什么曲線,并求出
與
的值;
(2)設當時,
與
,
的交點分別為
,當
,
與
,
的交點分別為
,求四邊形
的面積.
科目:高中數學 來源: 題型:
【題目】已知△ABC的三個內角A、B、C所對的邊分別是a、b、c,向量m=(cos B,cos C),n=(2a+c,b),且m⊥n.
(1)求角B的大;
(2)若b=,求a+c的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四棱錐的底面為矩形,D為
的中點,AC⊥平面BCC1B1.
(Ⅰ)證明:AB//平面CDB1;
(Ⅱ)若AC=BC=1,BB1=,
(1)求BD的長;
(2)求B1D與平面ABB1所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC=CA=,AD=CD=1.
(1)求證:BD⊥AA1.
(2)在棱BC上取一點E,使得AE∥平面DCC1D1,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】f(x)是定義在R上的奇函數,對x,y∈R都有f(x+y)=f(x)+f(y),且當x>0時,f(x)<0,f(-1)=2.
(1)求證:f(x)為奇函數;
(2)求證:f(x)是R上的減函數;
(3)求f(x)在[-2,4]上的最值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】共享單車是城市慢行系統的一種模式創新,對于解決民眾出行“最后一公里”的問題特別見效,由于停取方便、租用價格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產新樣式的單車,已知生產新樣式單車的固定成本為20000元,每生產一件新樣式單車需要增加投入100元.根據初步測算,自行車廠的總收益(單位:元)滿足分段函數,其中
是新樣式單車的月產量(單位:件),利潤
總收益
總成本.
(1)試將自行車廠的利潤元表示為月產量
的函數;
(2)當月產量為多少件時自行車廠的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知如圖,六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABCDEF.則下列結論不正確的是( )
A. CD∥平面PAF
B. DF⊥平面PAF
C. CF∥平面PAB
D. CF⊥平面PAD
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學用“五點法”畫函數f(x)=Asin(ωx+φ)在某一個周期內的圖象時,列表并填入的數據如下表:
x | x1 | x2 | x3 | ||
ωx+φ | 0 | π | 2π | ||
Asin(ωx+φ) | 0 | 2 | 0 | -2 | 0 |
(1)求x1,x2,x3的值及函數f(x)的表達式;
(2)將函數f(x)的圖象向左平移π個單位,可得到函數g(x)的圖象,求函數y=f(x)·g(x)在區間的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com