精英家教網 > 高中數學 > 題目詳情

(本小題滿分13分)

已知橢圓過點,且點軸上的射影恰為橢圓的一個焦點

(Ⅰ)求橢圓的方程;

(Ⅱ)過作兩條傾斜角互補的直線與橢圓分別交于兩點.試問:四邊形能否為平行四邊形?若能,求出直線的方程;否則說明理由.

 

【答案】

 

(1)

(2)

【解析】解:(I)由已知易知橢圓的一個焦點為,則橢圓的另一個焦點為.

,得:,所以所求的橢圓方程

.

(II)能.證明如下:設直線的方程為,代入,

并整理得:.

,則由得:,

代入得:,所以.

換成,得從而.

由于,,故當時,四邊形為平行四邊形.

設直線的方程為,代入并整理得:.

,則有,

所以

,解得,所以得方程為.

 

 

練習冊系列答案
相關習題

科目:高中數學 來源:2015屆江西省高一第二次月考數學試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數.

(1)求函數的最小正周期和最大值;

(2)在給出的直角坐標系中,畫出函數在區間上的圖象.

(3)設0<x<,且方程有兩個不同的實數根,求實數m的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題

(本小題滿分13分)已知定義域為的函數是奇函數.

(1)求的值;(2)判斷函數的單調性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:河南省09-10學年高二下學期期末數學試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數學 來源:2010-2011學年福建省高三5月月考調理科數學 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數,數列{}的首項.

(1) 求函數的表達式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數列的前項和

 

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视