解:關于x的不等式

即

,即

.
不等式中,各因式的根分別為-2、-a、

.
①當a<-2時,有-a>

>-2,不等式即

,
解得-a>x>

,或 x<-2,故不等式的解集為 {x|-a>x>

,或 x<-2}.
②當a=-2時,不等式即

>0,即

<0,
∴x≠-2,且x<-

,故不等式的解集為 {x|x<-

,且 x≠-2 }.
③當-2<a<-

時,有-a>

>-2,不等式即

,解得-a>x>

,或 x<-2,
故不等式的解集為 {x|-a>x>

,或 x<-2}.
④當a=-

時,不等式即

>0,即

,
∴x≠-2,且x<-

,故不等式的解集為 {x|x<-

,且 x≠-2}.
⑤當0>a>-

時,有-a>-2>

,不等式即

>0,即

,
解得-a>x>-2,或 x<

,故不等式的解集為 {x|-a>x>-2,或 x<

}.
⑥當a=0時,不等式即

>0,即

,解得-2<x<0,故不等式的解集為{x|-2<x<0 }.
⑦當0<a<1時,不等式即

>0,即

,解得x>

,或-2<x<a,
故不等式的解集為 {x|x>

,或-2<x<a }.
綜上可得,
當a<-2 或-2<a<-

時,解集為 {x|-a>x>

,或 x<-2};
當a=-2或a=-

時,解集為 {x|x<-

,且 x≠-2 };
當0>a>-

時,解集為 {x|-a>x>-2,或 x<

};
當a=0時,解集為{x|-2<x<0 };
當0<a<1時,解集為 {x|x>

,或-2<x<a }.
分析:不等式中各因式的根分別為-a、

、-2,分a<-2、a=-2、-2<a<-

、a=-

、0>a>-

、a=0、0<a<1七種情況,分別求出不等式的解集,綜合可得結論.
點評:本題主要考查分式不等式的解法,體現了分類討論以及化歸與轉化的數學思想,屬于中檔題.