精英家教網 > 高中數學 > 題目詳情

設a<1,解關于x的不等式數學公式

解:關于x的不等式,即
不等式中,各因式的根分別為-2、-a、
①當a<-2時,有-a>>-2,不等式即 ,
解得-a>x>,或 x<-2,故不等式的解集為 {x|-a>x>,或 x<-2}.
②當a=-2時,不等式即>0,即 <0,
∴x≠-2,且x<-,故不等式的解集為 {x|x<-,且 x≠-2 }.
③當-2<a<- 時,有-a>>-2,不等式即 ,解得-a>x>,或 x<-2,
故不等式的解集為 {x|-a>x>,或 x<-2}.
④當a=-時,不等式即>0,即 ,
∴x≠-2,且x<-,故不等式的解集為 {x|x<-,且 x≠-2}.
⑤當0>a>- 時,有-a>-2>,不等式即 >0,即,
解得-a>x>-2,或 x<,故不等式的解集為 {x|-a>x>-2,或 x<}.
⑥當a=0時,不等式即 >0,即 ,解得-2<x<0,故不等式的解集為{x|-2<x<0 }.
⑦當0<a<1時,不等式即 >0,即 ,解得x>,或-2<x<a,
故不等式的解集為 {x|x>,或-2<x<a }.
綜上可得,
當a<-2 或-2<a<- 時,解集為 {x|-a>x>,或 x<-2};
當a=-2或a=-時,解集為 {x|x<-,且 x≠-2 };
當0>a>- 時,解集為 {x|-a>x>-2,或 x<};
當a=0時,解集為{x|-2<x<0 };
當0<a<1時,解集為 {x|x>,或-2<x<a }.
分析:不等式中各因式的根分別為-a、、-2,分a<-2、a=-2、-2<a<-、a=-、0>a>-、a=0、0<a<1七種情況,分別求出不等式的解集,綜合可得結論.
點評:本題主要考查分式不等式的解法,體現了分類討論以及化歸與轉化的數學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設a<1,解關于x的不等式
x+2ax2+a2x-x-a
>0

查看答案和解析>>

科目:高中數學 來源: 題型:

設a>1,解關于x的不等式loga(2x2-3x+1)>loga(x2+2x-3).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設a>1,解關于x的不等式loga(2x2-3x+1)>loga(x2+2x-3).

查看答案和解析>>

科目:高中數學 來源:2004-2005學年重慶市南開中學高一(上)期中數學試卷(解析版) 題型:解答題

設a>1,解關于x的不等式loga(2x2-3x+1)>loga(x2+2x-3).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视