精英家教網 > 高中數學 > 題目詳情
已知f(x)為定義在R上的奇函數,當x∈(0,1)時,f(x)=.

(1)求f(x)在(-1,1)上的解析式;

(2)證明f(x)在(0,1)上是減函數.

答案:(1)解:∵f(x)是定義在R上的奇函數,∴當x=0時,f(x)=0.∴f(-x)==-f(x).

∴f(x)=.∴f(x)=

(2)證明:任取x1、x2∈(0,1)且x1<x2.f(x1)-f(x2)=

∵x1<x2且x1、x2∈(0,1),∴=1.

>0.∴f(x1)>f(x2).∴f(x)在(0,1)上是減函數.

練習冊系列答案
相關習題

科目:高中數學 來源:高三數學教學與測試 題型:044

已知f(x)為定義在(-1,1)上的奇函數,當x∈(0,1)時,f(x)=

(1)求f(x)在(-1,1)上的解析式;(2)判斷f(x)在(-1,1)上的單調性,并給予證明.

查看答案和解析>>

科目:高中數學 來源:數學教研室 題型:044

已知f(x)為定義在(-1,1)上的奇函數,當xÎ (0,1)時,

(1)求f(x)在(-1,1)上的解析式;

(2)判斷f(x)在何區間上單調遞減并證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)為定義在(-∞,+∞)上的偶函數,且f(x)在[0,+∞)上為增函數,則f(-2),f(-π),f(3)的大小順序是(  )

(A)f(-π)<f(3)<f(-2)

(B)f(-π)<f(-2)<f(3)

(C)f(-2)<f(3)<f(-π)

(D)f(3)<f(-2)<f(-π)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视